Tag Archive for: AML Navigator Testing

Genetic Testing in AML: What Are Doctors Looking For?

Genetic Testing in AML: What Are Doctors Looking For? from Patient Empowerment Network on Vimeo.

Dr. Pinkal Desai, from Weill Cornell Medicine, discusses the genetic testing required in AML, including mutations and changes in chromosomes that are being identified, and how these results can impact risk and prognosis.

Dr. Pinkal Desai is an Assistant Professor of Medicine at Weill Cornell Medical College and Assistant Attending Physician at the New York-Presbyterian Hospital. More about this expert here.

More From INSIST! AML

Related Resources

AML Genetic Testing Explained

Why Should AML Patients Undergo Genetic Testing?  

Why Should AML Patients Undergo Genetic Testing?

  

Key Genetic Testing after an AML Diagnosis

Transcript:

Dr. Pinkal Desai:         

So there are several genes that we look for, but the most important ones from a standpoint of choosing treatments and monitoring, the first one would be FLT3. There are two kinds of FLT3 mutations, ITD and TKD; both can have different drugs that target them.

This is relevant because some of the upfront management, even when we choose – in younger patients, for example, when we are choosing chemotherapy, there are approved FLT3 agents that can be added to the chemotherapy. For example, Midostaurin, that’s a FLT3 inhibitor; we use that, and it’s important to know the FLT3 results, and preferably within 48 hours from the diagnosis, in order to choose the right treatment.

The other mutations that are relevant are IDH1 and IDH2. Both of them have approved targeted treatment against them, so depending on the clinical scenario of the patient, whether it’s new diagnosis or a relapse, these mutations are important to test, and the same for FLT3 as well.

I want to clarify here that sometimes the molecular mutations are absolutely important at diagnosis, but some of these mutations are also important to be retested in people who have relapsed because it’s not always the case that what is present at baseline may be the same at the time of relapse.

It’s possible that the clone is different, so some of these targeted mutations against which we have drugs, like FLT3, IDH, we need to test these mutations at relapse to make sure that we’re not missing them, particularly if they were present at diagnosis. The other mutation that is also relevant is TP53 because there are ongoing clinical trials that are targeting against these mutations, so the relevance of mutations are not only important in approved agents, but also in the ongoing clinical trials that are targeting these mutations.

 NPM1 is the other important mutation that is important in risk profiling, as well as monitoring over time to see if we can anticipate relapse or do something about it in the future.

There’s a laundry list of other mutations, but these are – I don’t think that patients should get lost into the individual mutations at the beginning. I think the relevant point here is that all of these need to be sent, and once the panel comes back with all of these mutations, then it’s time to sit down and go through, “Okay, the patient has FLT3, NPM1, plus some other mutation. What does that mean for me?” I think that’s what the patients should be asking. “Okay, I got these three mutations. I have these four mutations. Tell me how this is going to impact my care and my chances of survival?” I think that’s the most important thing.

Everybody’s leukemia is different. It’s more than a mixed bag; it’s actually unique to patients. Someone’s profile and genetic signature is different than someone else’s.

It’s important that every mutation is actually dealt with in relation to the other because it’s not just the presence of individual mutations, but the combinations of all of these mutations that are high relevant in figuring out whether this is important in the future or not. 

Why Should AML Patients Undergo Genetic Testing?

Why Should AML Patients Undergo Genetic Testing? from Patient Empowerment Network on Vimeo.

AML expert, Dr. Pinkal Desai, explains the necessity of genetic testing when AML is diagnosed, including an overview of relevant tests and how results can affect prognosis, risk factors and treatment.

Dr. Pinkal Desai is an Assistant Professor of Medicine at Weill Cornell Medical College and Assistant Attending Physician at the New York-Presbyterian Hospital. More about this expert here.

More From INSIST! AML

Subscribe to stay up-to-date in the latest information in AML testing

* indicates required



<script><script>

Related Resources

AML Genetic Testing Explained

The Pro-Active AML Patient Toolkit

What Causes a Gene Mutation?

What Causes a Gene Mutation?

Transcript:

Dr. Pinkal Desai:         

So the reason that genetic testing is important and the patient should go through genetic testing after a diagnosis of AML, there are several reasons, actually, and we’ll go one by one. But before I go there, I want to clarify that genetic testing in AML does not mean that we’re testing for whether the patient inherits this mutation or genetic abnormality.

This is actually a mutation or genetic damage in the leukemia cells and not in the patient’s body elsewhere, so it’s important; this is a tumor-defining test and not meant to actually figure out whether this is inherited or not because most AML is actually not inherited. The other part that I want to focus on is that this testing, genetic testing or molecular testing or molecular profiling of leukemia, as we call it, is different than cytogenetics. Sometimes patients can be a little bit confused between what is molecular profiling and what is cytogenetics. Cytogenetics are big DNA or big changes in the chromosomes, while molecular mutations are single point gene mutations, which requires a much more detailed analysis of the leukemia cells.

The reasons that this testing is important, and the other part of it is that it’s just not after; it’s actually during the whole process of diagnosis of AML. If AML is suspected, then it should be done on the diagnosis bone marrow at the time when we’re drawing the blood. Otherwise, many times patients have to repeat a bone marrow biopsy to get this testing. So if something is already suspected that we are gonna maybe find leukemia, this should be done at the time of diagnosis. The first reason, which is the most important, is that when we do this molecular testing there’s a set of genes that we test. It’s 200s, 300s; every panel is a little bit different, but generally have the best components that we care about in the AML diagnosis.

There are targeted treatments against some of these mutations, and it’s important to know these mutations before the treatment begins. Not all mutations will change the way the treatment is designed, but there are certain mutations like FLT3, IDH, where it might matter as to what you choose as the frontline or the first line treatment, so it’s important that we actually get these results, at least some of these results, by the time we decide to choose the right treatment for the patient.

The second reason this is relevant is when patients go through AML induction or the first line treatment, the goal of which is induce remission, once they are in remission, the work is not done. There are several other things that we have to do and more treatments that are designed based on this molecular testing.

For example, depending on the molecular testing and the cytogenetics or the chromosomes, we profile patients as low risk, intermediate risk, or high risk. This risk means what is the likelihood that this leukemia will come back in the future, and how would that impact the patient’s survival? Some of the post-remission treatments are designed to change depending on the results of these mutations, so it’s important to actually know this at diagnosis because then the patients would go into remission, and yet we have to make a decision on what kind of best treatment to give post-remission in order to make sure that the patient is cured, or we maximize the chance of cure in this patient.

So the kind of chemotherapy, whether to transplant or not transplant, all of this is dependent on the molecular mutations. The third reason, which is becoming more and more relevant now in AML, is some of these mutations can be monitored over time.  

 It’s a much detailed testing to know the kind of remission or the extent of remission that they patient achieves, and you can actually follow these mutations over time, even in remission, to know that – is the molecular mutation zero, is it 0.2%? This is a very upcoming field in AML, and the idea of monitoring these mutations is relevant because if you have a mutation, can you do something about it post-remission? Would that alter some of the treatments? Would that help us anticipate if a relapse is coming before the actual clinical relapse happens and the blood counts go abnormal? Can we anticipate is this patient likely to relapse, for example, six months later, and could you prevent these relapses?

These are all the reasons why these genetic testing or molecular profiling of leukemia is highly relevant in the field of leukemia. We all cannot even make a decision anymore without having this full panel.