Tag Archive for: cancer screening

June 2023 Notable News

June brings many challenges for cancer patients and new knowledge can help fight the disease. Insurance companies have taken the fight to the supreme court to try to avoid paying for cancer screening tests. A shortage of two cancer drugs is having a significant impact on cancer patients in the U.S. Obesity has been found to be a rising risk factor for cancer, affecting men and women differently.

Survey Finds Majority of Cancer Patients and Survivors Would be Less Likely to Get Recommended Screenings if Costs Were Added

Thanks to a provision in the Affordable Care Act (ACA) that requires evidence-based prevention and early detection at no cost to patients with private insurance, we’ve seen improved access to recommended services that detect disease when it is less costly to treat, and chances of survival are greater reports American Cancer Society. A new ruling in the case Braidwood v Becerra, in the US District Court in Texas, is threatening that access for patients. Patients surveyed said that a cost between $100 to $200 for preventative tests would be a burden to them financially and would be a barrier to getting those lifesaving tests. The cost increase incurred can either be from annual screening or lifesaving treatments. Cancer patients already face challenges in finding a provider due to cost. A patient navigator is also a beneficial service for cancer patients and has been shown to help influence better outcomes. The cost of the navigator can be prohibitive for patients. Insurance cutbacks are a matter of life and death for many cancer patients. Click here for more information.

Carboplatin, Cisplatin Chemotherapy Drug Shortages Delaying Some Cancer Treatments in New York

We’re really in an unprecedented situation in the cancer field, said Dr Richard Carvajal, a medical oncologist who helps run Northwell Health Cancer Institute. Carboplatin and cisplatin shortages are delaying treatment, forcing doctors and patients to make tough choices, according to Carvajal reports CBS News. These two drugs are used in 10 to 20% of cancer patient treatment in New York. Doctors are having to give lower doses or fewer doses of this chemotherapy to patients. The National Comprehensive Cancer Network released a study that found 93% of cancer centers in the U.S. are experiencing this shortage reports CBS News. In January, a large plant in India had quality control problems with much of its supply causing this shortage. Doctors must choose who gets treatment and who does not. The FDA is trying to get the cancer drugs sent from China to help correct the shortage. Patients should talk with their physician about their best option. Click here for more information.

Women and Men Face Different Cancers- Depending on Where Fat Falls

To investigate the links between cancer and obesity among men and women, Rask- Anderson and other researchers turned to the UK Biobank, a biomedical database with genetic and health information from more than half a million participants across the UK reports New York Post. The research has shown that all cancers are influenced by obesity except for brain, cervical, and testicular cancers. Obesity causes men to be more at risk for breast, liver, and kidney cancers. For women, obesity causes them to be more at risk for gallbladder, endometrial, and esophageal cancers. An increase in fat accumulation in the abdomen makes women more at risk for esophageal cancers. An increase in total body fat in men cause a higher risk for liver cancer. Postmenopausal women are at a higher risk for breast cancer when they are obese. Obesity is the fastest growing risk factor for cancer. Click here for more information.

March 2023 Notable News

March highlights the daily discoveries that are having a big impact on cancer treatment. Scientists have discovered ecDNA, a genetic material outside of chromosomes, that may lead to a new way to treat cancer. A geriatrician has developed an assessment tool to help doctors to choose more individualized cancer treatments. A new urine cancer test makes it easier for everyone to have access to cancer screening, even outside of the doctor’s office. Each day presents new opportunities for fighting the war on cancer.

Breakthrough ecDNA Discovery Could Revolutionize Cancer Research

A multi-disciplinary team of researchers has pinpointed the major role played by extrachromosomal DNA in the evolution of carcinogenic diseases. This kind of “external” oncogenes make cancer drug-resistance, and it could become one of the main targets for new and effective treatments in the future reports Tech Spot. This ecDNA is a piece of genetic material found outside of chromosomes in human cells. Genetic material outside of cells can be a sign of cancer. Researchers have found ecDNA’s role is to cause the cancer to spread rapidly, create tumors that are drug resistant, and can cause a relapse of the cancer. Oncogenes can hide in ecDNA for a period of time before becoming active again. Scientists are now using this knowledge to look at fighting cancer in a different way. Click to read the full story.

A Different Approach to Treating Cancer

Age is by far the biggest risk factor for getting cancer and it is the main factor in determining treatment options. Older patients are not all the same when it comes to activity and general health. There are patients in their 80’s that are healthier than some patients in their 60’s. Geriatrician Wiliam Dale’s team created a multi-dimensional assessment tool that looks at each patient’s physical and functional health reports WINK NEWS. The parameters of this tool look at patient nutrition, sleep, and mental health; focusing on the individual needs of the patient. The results of this new assessment have made for better outcomes for cancer patients. They experienced less chemotherapy toxicity, less nausea, and had better blood counts. The findings also showed that patients with hearing loss were at more risk for complications due to not hearing physician instructions clearly. Click to read the full story.

New Cancer Screening Urine Test has 99 Percent Accuracy Rate

Researchers from the Surface & Nano Materials Division of the Korea Institute of Materials Science recently developed a strip-type urine sensor capable of amplifying the light signal of metabolites in urine to diagnose cancer reports MITech News. The urine test needs no other analysis, making it simple to use outside of the hospital or doctor’s office. Cancer cells release metabolites, using a light scattering technique on the test strip, cancer can be detected using a small amount of urine. This test can detect cancer in various stages with 99% accuracy. It is a less invasive screening test, and the results can be used to get the patient to the doctor for further testing. Early screening for cancer allows for earlier treatment, making better patient outcomes. Click to read the full story.

A Patient’s Perspective | Participating in a Clinical Trial

A Patient’s Perspective | Participating in a Clinical Trial from Patient Empowerment Network on Vimeo.

Colorectal cancer survivor Cindi Terwoord recounts her clinical trial experience and explains why she believes patients should consider trial participation.

Dr. Pauline Funchain is a medical oncologist at the Cleveland Clinic. Dr. Funchain serves as Director of the Melanoma Oncology Program, co-Director of the Comprehensive Melanoma Program, and is also Director of the Genomics Program at the Taussig Cancer Institute of the Cleveland Clinic. Learn more about Dr. Funchain, here.

Cindi Terwoord is a colorectal cancer survivor and patient advocate. Learn more about Cindi, here.

See More from Clinical Trials 101

Related Resources:

A Patient Shares Her Clinical Trial Experience

If I Participate in a Clinical Trial, Will I Be a Guinea Pig?

Are Clinical Trials a Logistical Nightmare?


Transcript:

Katherine Banwell:    

Cindi, you were diagnosed with stage IV colorectal cancer, and decided to participate in a clinic trial. Can you tell us about what it was like when you were diagnosed?

Cindi Terwoord:        

Yeah. That was in September of 2019, and I had had some problems; bloody diarrhea one evening, and then the next morning the same thing. So, I called my husband at work, I said, “Things aren’t looking right. I think I’d better go to the emergency room.”

And so, we went there, they took blood work – so I think they knew something was going on – and said, “We’re going to keep you for observation.” So, then I knew it must’ve been something bad. And so, two days later, then I had a colonoscopy, and that’s when they found the tumor, and so that was the beginning of my journey.

Katherine Banwell:    

Mm-hmm. Had you had a colonoscopy before, or was that your first one?

Cindi Terwoord:        

No, I had screenings, I would get screenings. I had heard a lot of bad things about colonoscopies, and complications and that, so I was always very leery of doing that. Shame on me. I go for my other screenings, but I didn’t like to do that one. I have those down pat now, I’m very good at those.

Katherine Banwell:    

Yeah, I’m sure you do. So, Cindi, what helped guide your decision to join a clinical trial?

Cindi Terwoord:        

Well, I have a friend – it was very interesting.

He was probably one of the first people we told, because he had all sorts of cancer, and he was, I believe, one of the first patients in the nation to take part in this trial. It’s nivolumab (Opdivo), and he’s been on it for about seven years. And he had had various cancers would crop up, but it was keeping him alive.

And so, frankly, I didn’t know I was going to have the option of a trial, but he told me run straight to Cleveland Clinic, it’s one of the best hospitals. So, I took his advice. And the first day the doctor walked in, and then all these people walked in, and I’m like, “Why do I have so many people in here?” Not just a doctor and a nurse. There was like a whole – this is interesting.

And so, then they said, “Well, we have something to offer you. And we have this immunotherapy trial, and you would be one of the first patients to try this.”

Now, when they said first patient, I’m not quite sure if they meant the first colon cancer patient, I’m not sure. But they told me the name of it, and I said, “I’m in. I’m in.” Because I knew my friend had survived all these years, and I thought, “Well, I’ve gotten the worst diagnosis I can have, what do I have to lose?” So, I said, “I’m on board, I’m on board.”

Katherine Banwell:    

Mm-hmm. Did you have any hesitations?

Cindi Terwoord:        

Nope. No, I’m an optimistic person, and what they assured me was that I could drop out at any time, which I liked that option.

Because I go, “Well, if I’m not feeling well, and it’s not working, I’ll get out.” So, I liked that part of it. I also liked, as Dr. Funchain had said, you go in for more visits. And I like being closely monitored, I felt that was very good.

I’ve always kept very good track of my health. I get my records, I get my office notes from my doctor. I’m one of those people. I probably know the results of blood tests before the doctor does because I’m looking them up. So, I felt very confident in their care. They watched me like a hawk. I kept a diary because they were asking me so many questions.

Katherine Banwell:    

Oh, good for you.

Cindi Terwoord:        

I’m a transcriptionist, so I just typed out all my notes, and I’d hand it to them.

Katherine Banwell:    

That’s a great idea.

Cindi Terwoord:        

Here’s how I’m feeling, here’s…And I was very lucky I didn’t have many side effects.

Katherine Banwell:    

In your conversations with your doctor, did you weigh the pros and cons about joining a trial? Or had you already made up your mind that yes, indeed, you were going for it?

Cindi Terwoord:        

Yeah, I already said, “I’m in, I’m in.” Like I said, it had kept my friend alive for these many years, he’s still on it, and I had no hesitation whatsoever.

I wish more people – I wanted to get out there and talk to every patient in the waiting room and say, “Do it, do it.”

I mean, you can’t start chemotherapy then get in the trial. And if I ever hear of someone that has cancer, I ask them, “Well, were you given the option to get into a trial?” Well, and then some of them had started the chemo before they even thought of that.

Katherine Banwell:    

Mm-hmm. So, how are you doing now, Cindi? How are you feeling?

Cindi Terwoord:        

Good, good, I’m doing fantastic, thank goodness, and staying healthy. I’m big into herbal supplements, always was, so I keep those up, and I’m exercising. I’m pretty much back to normal –

Katherine Banwell:

Cindi, what advice do you have for patients who may be considering participating in a trial? 

Cindi Terwoord:

Do it. Like I said, I don’t see any downside to it. You want to get better as quickly as possible, and this could help accelerate your recovery. And everything Dr. Funchain mentioned, as far as – I really never brought up any questions about whether it would be covered. 

And then somewhere along the line, one of the research people said, “Well, anything the trial research group needs done – like the blood draws – that’s not charged to your insurance.” So, that was nice, that was very encouraging, because I think everybody’s afraid your insurance is going to drop you or something.  

And then the first day I was in there for treatment, a social worker came in, and they talked to you. “Do you need financial help? We also have art therapy, music therapy,” so that was very helpful. I mean, she came in and said, “I’m a social worker,” and I’m like, “Oh, okay. I didn’t know somebody was coming in here to talk to me.” 

But that was all very helpful, and I did get free parking for a few weeks. I mean, sometimes I’d have to remind them. I’d say, “It’s costing me more to park than to get treated.” But, yeah, like I said, I’m a big advocate for it, because you hear so many positive outcomes from immunotherapy trials, and boy, I’d say if you’re a candidate, do it. 

Katherine Banwell:

Dr. Funchain, do you have any final thoughts that you’d like to leave the audience with? 

Dr. Pauline Funchain:

First, Cindi, I have to say thank you. I say thank you to every clinical trial participant, everybody who participates in the science. Because honestly, whether you give blood, or you try a new drug, I think people don’t understand how many other lives they touch when they do that.  

It’s really incredible. Coming into clinic day in and day out, we get to see – I mean, really, even within a year or two years, there are people that we’ve seen on clinical trial that we’re now treating normally, standardly, insurance is paying for it, it’s all standard of care. And those are even the people we can see, and there are so many people we can’t see in other centers all over the world, and people who will go on after us, right?  

 So, it’s an amazing – I wouldn’t even consider most of the time that it’s a personal sacrifice. There are a couple more visits and things like that, but it is an incredible gift that people do, in terms of getting trials. And then for some of those trials, people have some amazing results. 

And so, just the opportunity to have patients get an outcome that wouldn’t have existed without that trial, like Cindi, is incredible, incredible. 

March 2022 Digital Health Round Up

Cancer screening is the best tool available in the fight against cancer. Thanks to technological advances, one company is using artificial intelligence to transform the future of cervical cancer screening. Rush Hospital in Chicago is also using an artificial intelligence system to improve colon cancer screening. Both cervical and colon cancer often do not present with symptoms in early stages, so screening is important. A company in Madison is using digital technology to analyze tumor biopsies, in turn allowing for more effective treatment options for providers and patients.

AI Transforms Cervical Cancer Screening

Health experts said the new technology could be instrumental in ensuring earlier detection of pre-cancerous cells and cancer cells and has the potential to save lives, reports Newschainonline.com . A hospital in the UK is piloting the technology using artificial intelligence that takes digital cytology images from cervical smear samples that test positive for HPV (human papillomavirus). The AI sorts through all the cell images and pulls out the images of abnormalities. The expert providers use these images to detect pre-cancerous and cancerous cells, allowing for earlier diagnosis and treatment of cancer. Find more information here.

Rush Deploys AI System for Colon Cancer Screening

The Medtronic GI Genius intelligent endoscopy system can help increase the ability to locate multiple polyps during a colonoscopy by 50 percent, resulting in enhanced diagnosis and treatment of digestive diseases, reports healthitanalytics.com . This Artificial Intelligence helps physicians find polyps that the naked eye cannot see, therefore catching the polyps before cancer can develop. Colon cancer is the second deadliest cancer. Rush Hospital in Chicago, Illinois is using the technology during their colonoscopies. Find more information here.

Madison Company Testing New Technology in Cancer Diagnosis

With three-dimensional imaging licensed from the Wisconsin Alumni Research Foundation, based on work from the lab of UW-Madison biomedical engineering professor Kevin Eliceiri, Elephas Biosciences can analyze live tumor samples to see how well they respond to therapies, reports Madison.com . This can help diagnose all types of cancer with solid tumors. These live tissue samples from the biopsies can be tested with different treatments to see which is most effective. Physicians can try the treatment on the tumor before using it on the patient; this could eliminate blind testing and provide better outcomes with less side effects for patients. Find more information here.

Cancer Screening Overview

This resource was originally published by NCI Cancer.gov here.

Cancer Screening Overview (PDQ®)–Patient Version

What Is Cancer Screening?

KEY POINTS

  • Cancer screening is looking for cancer before a person has any symptoms.
  • There are different kinds of screening tests.
  • Screening tests have risks.
    • Some screening tests can cause serious problems.
    • False-positive test results are possible.
    • False-negative test results are possible.
    • Finding the cancer may not improve the person’s health or help the person live longer.

Cancer screening is looking for cancer before a person has any symptoms.

Screening tests can help find cancer at an early stage, before symptoms appear. When abnormal tissue or cancer is found early, it may be easier to treat or cure. By the time symptoms appear, the cancer may have grown and spread. This can make the cancer harder to treat or cure.

It is important to remember that when your doctor suggests a screening test, it does not always mean he or she thinks you have cancer. Screening tests are done when you have no cancer symptoms.

There are different kinds of screening tests.

Screening tests include the following:

  • Physical exam and history: An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.
  • Laboratory tests: Medical procedures that test samples of tissue, bloodurine, or other substances in the body.
  • Imaging procedures: Procedures that make pictures of areas inside the body.
  • Genetic tests: Tests that look for certain gene mutations (changes) that are linked to some types of cancer.

Screening tests have risks.

Not all screening tests are helpful and most have risks. It is important to know the risks of the test and whether it has been proven to decrease the chance of dying from cancer.

Some screening tests can cause serious problems.

Some screening procedures can cause bleeding or other problems. For example, colon cancer screening with sigmoidoscopy or colonoscopy can cause tears in the lining of the colon.

False-positive test results are possible.

Screening test results may appear to be abnormal even though there is no cancer. A false-positive test result (one that shows there is cancer when there really isn’t) can cause anxiety and is usually followed by more tests and procedures, which also have risks.

False-negative test results are possible.

Screening test results may appear to be normal even though there is cancer. A person who receives a false-negative test result (one that shows there is no cancer when there really is) may delay seeking medical care even if there are symptoms.

Finding the cancer may not improve the person’s health or help the person live longer.

Some cancers never cause symptoms or become life-threatening, but if found by a screening test, the cancer may be treated. There is no way to know if treating the cancer would help the person live longer than if no treatment were given. In both teenagers and adults, there is a rare risk of attempted or actual suicide in the first year after being diagnosed with cancer. Also, treatments for cancer have side effects.

For some cancers, finding and treating the cancer early does not improve the chance of a cure or help the person live longer.

What Is Informed and Shared Decision-Making?

KEY POINTS

  • It is important that you understand the benefits and harms of screening tests and make an informed choice about which screening tests are right for you.

It is important that you understand the benefits and harms of screening tests and make an informed choice about which screening tests are right for you.

Before having any screening test, it is important that you discuss the test with your doctor or other health care provider. Every screening test has both benefits and harms. Your health care provider should talk to you about the benefits and harms of a screening test and include you in the decision about whether the screening test is right for you. This is called informed and shared decision-making.

  1. Your health care provider will talk to you about the possible benefits, harms, and unknowns of a screening test. This may include information about the benefits of finding a cancer early or the harms related to false test results, overdiagnosis, and overtreatment. Your health care provider may also give you information in a leaflet, booklet, video, website, or other material.
  2. After you understand the benefits and harms of a screening test, you can decide whether or not you want to have the screening test based on what is best for you. Sometimes the harms and benefits are closely matched and the decision about whether to have a screening test is hard to make.
  3. Your health care provider will write your decision down in your medical record and order the screening test, if that was your decision.

What Are the Goals of Screening Tests?

KEY POINTS

  • Screening tests have many goals.
  • Screening tests are not meant to diagnose cancer.

Screening tests have many goals.

screening test that works the way it should and is helpful does the following:

Screening tests are not meant to diagnose cancer.

Screening tests usually do not diagnose cancer. If a screening test result is abnormal, more tests may be done to check for cancer. For example, a screening mammogram may find a lump in the breast. A lump may be cancer or something else. More tests need to be done to find out if the lump is cancer. These are called diagnostic tests. Diagnostic tests may include a biopsy, in which cells or tissues are removed so a pathologist can check them under a microscope for signs of cancer.

Who Needs to Be Screened?

KEY POINTS

  • Certain screening tests may be suggested only for people who have a high risk for certain cancers.
  • Cancer screening research includes finding out who has an increased risk of cancer.

Certain screening tests may be suggested only for people who have a high risk for certain cancers.

Anything that increases the chance of cancer is called a cancer risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer.

Some screening tests are used only for people who have known risk factors for certain types of cancer. People known to have a higher risk of cancer than others include those who have any of the following:

People who have a high risk of cancer may need to be screened more often or at an earlier age than other people.

Cancer screening research includes finding out who has an increased risk of cancer.

Scientists are trying to better understand who is likely to get certain types of cancer. They study the things we do and the things around us to see if they cause cancer. This information helps doctors figure out who should be screened for cancer, which screening tests should be used, and how often the tests should be done.

Since 1973, the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute has been collecting information on people with cancer from different parts of the United States. Information from SEER, research studies, and other sources is used to study who is at risk.

How is Cancer Risk Measured?

Cancer risk is measured in different ways. The findings from surveys and studies about cancer risk are studied and the results are explained in different ways. Some of the ways risk is explained include absolute riskrelative risk, and odds ratios.

  • Absolute risk

    This is the risk a person has of developing a disease, in a given population (for example, the entire U.S. population) over a certain period of time. Researchers estimate the absolute risk by studying a large number of people that are part of a certain population (for example, women in a given age group). Researchers count the number of people in the group who get a certain disease over a certain period of time. For example, a group of 100,000 women between the ages of 20 and 29 are observed for one year, and 4 of them get breast cancer during that time. This means that the one-year absolute risk of breast cancer for a woman in this age group is 4 in 100,000, or 4 chances in 100,000.

  • Relative risk

    This is often used in research studies to find out whether a trait or a factor can be linked to the risk of a disease. Researchers compare two groups of people who are a lot alike. However, the people in one of the groups must have the trait or factor being studied (they have been “exposed”). The people in the other group do not have it (they have not been exposed). To figure out relative risk, the percentage of people in the exposed group who have the disease is divided by the percentage of people in the unexposed group who have the disease.

    Relative risks can be:

    • Larger than 1: The trait or factor is linked to an increase in risk.
    • Equal to 1: The trait or factor is not linked to risk.
    • Less than 1: The trait or factor is linked to a decrease in risk.

    Relative risks are also called risk ratios.

  • Odds ratio

    In some types of studies, researchers don’t have enough information to figure out relative risks. They use something called an odds ratio instead. An odds ratio can be an estimate of relative risk.

    One type of study that uses an odds ratio instead of relative risk is called a case-control study. In a case-control study, two groups of people are compared. However, the individuals in each group are chosen based on whether or not they have a certain disease. Researchers look at the odds that the people in each group were exposed to something (a trait or factor) that might have caused the disease. Odds describes the number of times the trait or factor was present or happened, divided by the number of times it wasn’t present or didn’t happen. To get an odds ratio, the odds for one group are divided by the odds for the other group.

    Odds ratios can be:

    • Larger than 1: The trait or factor is linked to an increase in risk.
    • Equal to 1: The trait or factor is not linked to risk.
    • Less than 1: The trait or factor is linked to a decrease in risk.

Looking at traits and exposures in people with and without cancer can help find possible risk factors. Knowing who is at an increased risk for certain types of cancer can help doctors decide when and how often they should be screened.

Does Screening Help People Live Longer?

KEY POINTS

  • Finding some cancers at an early stage (before symptoms appear) may help decrease the chance of dying from those cancers.
  • Screening studies are done to see whether deaths from cancer decrease when people are screened.
  • Certain factors may cause survival times to look like they are getting better when they are not.

Finding some cancers at an early stage (before symptoms appear) may help decrease the chance of dying from those cancers.

For many cancers, the chance of recovery depends on the stage (the amount or spread of cancer in the body) of the cancer when it was diagnosed. Cancers that are diagnosed at earlier stages are often easier to treat or cure.

Studies of cancer screening compare the death rate of people screened for a certain cancer with the death rate from that cancer in people who were not screened. Some screening tests have been shown to be helpful both in finding cancers early and in decreasing the chance of dying from those cancers. These include mammograms for breast cancer and sigmoidoscopy and fecal occult blood testing for colorectal cancer. Other tests are used because they have been shown to find a certain type of cancer in some people before symptoms appear, but they have not been proven to decrease the risk of dying from that cancer. If a cancer is fast-growing and spreads quickly, finding it early may not help the person survive the cancer.

Screening studies are done to see whether deaths from cancer decrease when people are screened.

When collecting information on how long cancer patients live, some studies define survival as living 5 years after the diagnosis. This is often used to measure how well cancer treatments work. However, to see if screening tests are useful, studies usually look at whether deaths from the cancer decrease in people who were screened. Over time, signs that a cancer screening test is working include:

The number of deaths from cancer is lower today than it was in the past. It is not always clear if this is because screening tests found the cancers earlier or because cancer treatments have gotten better, or both. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and reports information on survival times of people with cancer in the United States. This information is studied to see if finding cancer early affects how long these people live.

Certain factors may cause survival times to look like they are getting better when they are not.

These factors include lead-time bias and overdiagnosis.

  • Lead-time bias

    Survival time for cancer patients is usually measured from the day the cancer is diagnosed until the day they die. Patients are often diagnosed after they have signs and symptoms of cancer. If a screening test leads to a diagnosis before a patient has any symptoms, the patient’s survival time is increased because the date of diagnosis is earlier. This increase in survival time makes it seem as though screened patients are living longer when that may not be happening. This is called lead-time bias. It could be that the only reason the survival time appears to be longer is that the date of diagnosis is earlier for the screened patients. But the screened patients may die at the same time they would have without the screening test.

  • Overdiagnosis

    Sometimes, screening tests find cancers that don’t matter because they would have gone away on their own or never caused any symptoms. These cancers would never have been found if not for the screening test. Finding these cancers is called overdiagnosis. Overdiagnosis can make it seem like more people are surviving cancer longer, but in reality, these are people who would not have died from cancer anyway.

How do Screening Tests Become Standard Tests?

KEY POINTS

  • Results from research studies help doctors decide when a screening test works well enough to be used as a standard test.
  • Different types of research studies are done to study cancer screening.
  • The following types of studies are used to get information about cancer screening tests:
    • Randomized controlled trials
    • Nonrandomized controlled trials
    • Cohort studies
    • Case-control studies
    • Ecologic studies
    • Expert opinions
  • Screening tests for cancer are being studied in clinical trials.

Results from research studies help doctors decide when a screening test works well enough to be used as a standard test.

Evidence about how safe, accurate, and useful cancer screening tests are comes from clinical trials (research studies with people) and other kinds of research studies. When enough evidence has been collected to show that a screening test is safe, accurate, and useful, it becomes a standard test. Examples of cancer screening tests that were once under study but are now standard tests include:

Different types of research studies are done to study cancer screening.

Cancer screening trials study new ways of finding cancer in people before they have symptoms. Screening trials also study screening tests that may find cancer earlier or are more accurate than existing tests, or that may be easier, safer, or cheaper to use. Screening trials are designed to find the possible benefits and possible harms of cancer screening tests. Different clinical trial designs are used to study cancer screening tests.

The strongest evidence about screening comes from research done in clinical trials. However, clinical trials cannot always be used to study questions about screening. Findings from other types of studies can give useful information about how safe, useful, and accurate cancer screening tests are.

The following types of studies are used to get information about cancer screening tests:

Randomized controlled trials

Randomized controlled trials give the highest level of evidence about how safe, accurate, and useful cancer screening tests are. In these trials, volunteers are assigned randomly (by chance) to one of two or more groups. The people in one group (the control group) may be given a standard screening test (if one exists) or no screening test. The people in the other group(s) are given the new screening test(s). Test results for the groups are then compared to see if the new screening test works better than the standard test, and to see if there are any harmful side effects.

Using chance to assign people to groups means that the groups will probably be very much alike and that the trial results won’t be affected by human choices or something else.

Nonrandomized controlled trials

In nonrandomized clinical trials, volunteers are not assigned randomly (by chance) to different groups. They choose which group they want to be in or the study leaders assign them. Evidence from this type of research is not as strong as evidence from randomized controlled trials.

Cohort studies

cohort study follows a large number of people over time. The people are divided into groups, called cohorts, based on whether or not they have had a certain treatment or been exposed to certain things. In cohort studies, the information is collected and studied after certain outcomes (such as cancer or death) have occurred. For example, a cohort study might follow a group of women who have regular Pap tests, and divide them into those who test positive for the human papillomavirus (HPV) and those who test negative for HPV. The cohort study would show how the cervical cancer rates are different for the two groups over time.

Case-control studies

Case-control studies are like cohort studies but are done in a shorter time. They do not include many years of follow-up. Instead of looking forward in time, they look backward. In case-control studies, information is collected from cases (people who already have a certain disease) and compared with information collected from controls (people who do not have the disease). For example, a group of patients with melanoma and a group without melanoma might be asked about how they check their skin for abnormal growths and how often they check it. Based on the different answers from the two groups, the study may show that checking your skin is a useful screening test to decrease the number of melanoma cases and deaths from melanoma.

Evidence from case-control studies is not as strong as evidence from clinical trials or cohort studies.

Ecologic studies

Ecologic studies report information collected on entire groups of people, such as people in one city or county. Information is reported about the whole group, not about any single person in the group. These studies may give some evidence about whether a screening test is useful.

The evidence from ecologic studies is not as strong as evidence from clinical trials or other types of research studies.

Expert opinions

Expert opinions can be based on the experiences of doctors or reports of expert committees or panels. Expert opinions do not give strong evidence about the usefulness of screening tests.

Screening tests for cancer are being studied in clinical trials.

Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about cancer screening. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Cancer Screening Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/about-cancer/screening/patient-screening-overview-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389447]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

  • Updated: March 8, 2019

Notable News: September 2018

Since smoking is the leading cause of preventable disease and death worldwide, reports about it don’t usually contain good news, but this month they do. The International Association for the Study of Lung Cancer (IASLC) is convening in Toronto, Canada this week for the 19th World Conference on Lung Cancer #WCLC2018, and the importance of screening is being emphasized. Data coming out of the conference shows that CT screening reduces lung cancer deaths by 39% in women and 24% in men. Cdc.gov says the only recommended screening for lung cancer is low-dose computed tomography (also, low-dose CT scan or LDCT). Yearly lung cancer screenings are recommended for people who have a history of heavy smoking, smoke now or have quit in the past 15 years, and are between 55 and 80 years old. So, if you are at risk, make sure you are getting screened! Also, you can find the cdc.gov fact sheet about smoking here.

Another study shows that smoking might not remain the leading cause of preventable disease and death, but something else is going to take it’s place. Right now smoking is the leading cause of preventable cancer among women in the United Kingdom, but that is set to change, reports cnn.com. Thanks to a reduction in smoking and an increase in body weight, obesity will be the leading cause of cancer in women by 2043 if current trends continue. The news is particularly alarming because obesity can also cause some cancers, including breast cancer, to spread. Data collected between 1979 and 2014 was analyzed to determine the projections. Campaigns highlighting smoking risks are credited with the reduction in smoking-related cancers, and researchers are suggesting similar campaigns about the risk of obesity be implemented. More information can be found here. These findings aren’t unique to the UK; this report from November 2017 shows similar trends in the United States.

Obese or not, the quality of your food can increase your risk for cancer, reports medicalnewstoday.com. A study done in Paris shows that regular consumption of food low in nutritional value increases cancer risk. Of the 471,495 participants in the study, 49,794 had been diagnosed with cancer. More specifically, the findings showed men had an increased risk for colorectal cancer, cancer of the upper aerodigestive tract and stomach, and lung cancer. Women showed an increased risk for liver cancer and postmenopausal breast cancer. The research is being used to support the enforcement of a food-labeling system that would clearly state nutritional value of products. Learn more about the study and the food-labeling system here.

More good news comes this month in the form of new information. A study reported in cancer.gov reveals that cancer of the appendix, while usually given the same chemotherapy treatments, is actually quite different from colorectal cancer and other gastrointestinal cancers. The study also showed that the type of gene mutations present in appendiceal cancers could serve as an indicator for a patient’s prognosis. While the study isn’t likely to change practice yet, the information does provide helpful information about a rare cancer, and it indicates a need to develop treatments based on each specific cancer subtype. Much more detailed and technical information about the study findings and appendiceal cancers can be found here.

Finally, there are a couple of stories that happened this month that are worth sharing because they emphasize the poignancy of National Childhood Cancer Awareness Month in a way that little else could. The first is a love story about a couple that recently got married on the grounds of St. Jude’s Children’s Research Hospital. The bride and groom are both childhood cancer survivors who met at St. Jude’s while undergoing treatment 25 years ago. They lost touch over the years, but they were reunited when they both accepted jobs at St. Jude’s, and they rekindled their childhood friendship. Their friendship blossomed into love, and this couple of survivors chose September 1, the first day of Childhood Cancer Awareness Month, as their special day. Read more about the couple’s big day here. Bonus: there’s a video!

The second story is a different kind of love story. It’s about two-year-old Brody Allen. Brody has terminal brain cancer, and he loves Christmas. Brody isn’t expected to make it to Christmas this year so his parents decided to celebrate Christmas early. They put up a tree, and they put up outdoor decorations. Then, their neighbors started to decorate, too. Soon, the whole town was in on it and, earlier this week, Brody’s hometown put on a full-on, life-size Christmas parade in his honor, complete with super heroes and Santa Claus. You can read more about Brody here and see clips from his parade here. Merry Christmas, Brody.