Posts

Which Tests Do You Need Before Deciding on a CLL Treatment Path?

Which Tests Do You Need Before Deciding on a CLL Treatment Path? from Patient Empowerment Network on Vimeo.

Why do you need biomarker testing before deciding on a treatment plan for your CLL? Learn which key tests should occur before treatment begins and how the results may impact your care decisions.

See More From INSIST! CLL


Related Resources

 
What CLL Tests Are Essential and How Do Results Impact Treatment and Prognosis?

What CLL Tests Are Essential and How Do Results Impact Treatment and Prognosis?

What is High-Risk CLL and How Is It Treated?

What is High-Risk CLL and How Is It Treated?

What Factors Impact CLL Treatment Options?

What Factors Impact CLL Treatment Options?

 

Transcript:

Why do you need biomarker testing before deciding on a treatment plan for chronic lymphocytic leukemia—also known as CLL?

The results may predict how your CLL will behave and could indicate that one type of treatment may be more effective than another.

Biomarker testing—also referred to as risk stratification, genetic, or molecular testing—identifies specific gene mutations, proteins, chromosomal abnormalities and/or other molecular changes that are unique to YOUR CLL. 

These changes are only in the CLL cells and do not affect all the cells in your body.  These are not genetic changes that you inherit or pass on to your children.

Several tests that may help to guide these decisions, include:

  • The FISH test identifies chromosome abnormalities, including high-risk markers like the 17p deletion.
  • Next is testing for IGHV mutational status, which determines whether IGHV is mutated in a patient. Mutated IGHV indicates lower-risk CLL.
  • Then there is the TP53 mutation status test, which looks for mutations in the TP53 gene.

So why do these tests results matter?

One reason they matter is because patients with certain biomarkers may respond better to one treatment approach over another. 

  • For example, patients who are IGHV mutated have a special benefit from chemoimmunotherapy with FCR and could consider this approach. Patients who are IGHV unmutated should not consider FCR.
  • Additionally, patients with deletion 17p or TP53 mutations should never take chemoimmunotherapy, as it results in only a very short-term benefit.

When are these tests administered?

IGHV status typically doesn’t change over time and only needs testing at diagnosis or before your initial treatment.

FISH and TP53 should be repeated before beginning every treatment regimen, as these results may change over the course of the disease.

How can you make sure you have had essential biomarker testing?

  • First, always speak up and ask questions. Remember, you have a voice in YOUR CLL care. Your doctor is expecting you to ask questions and should be able to answer them.
  • Ask your doctor if you have had or will receive biomarker testing—including FISH, IGHV, and TP53–and how the results may impact your care and treatment plan. Be sure to ask for paper or electronic copies of your important test results.
  • And finally, bring a friend or a loved one to your appointments to help you process information and to take notes.

To learn more about your CLL and access tools for self-advocacy, visit powerfulpatients.org/CLL.

What CLL Tests Are Essential and How Do Results Impact Treatment and Prognosis?

What CLL Tests Are Essential and How Do Results Impact Treatment and Prognosis? from Patient Empowerment Network on Vimeo

Which chronic lymphocytic leukemia (CLL) tests are essential for patients? Dr. Lyndsey Roeker shares details about vital tests for CLL and the influence of results on treatment and prognosis.

Dr. Lyndsey Roeker is a hematologic oncologist at Memorial Sloan Kettering Cancer Center. Learn more about Dr. Roeker here.

Download Guide

See More From INSIST! CLL


Related Resources

 
What is High-Risk CLL and How Is It Treated?

What is High-Risk CLL and How Is It Treated?LL Treatment Types

What Factors Impact CLL Treatment Options?

What Factors Impact CLL Treatment Options?

How Can I Tell if My CLL Treatment is Effective?

How Can I Tell if My CLL Treatment is Effective?


Transcript:

Katherine:                  

What tests are necessary to help understand a patient-specific disease, both at diagnosis and prior to treatment?

Dr. Roeker:                

So, at diagnosis flow cytometry is the first test done, and what that means is, you take all of your white blood cells in your blood, and you run them through a fancy machine that puts them into buckets. So, you have a bucket of your normal neutrophils, a bucket of your normal lymphocytes, and then you find this bucket of cells that look somewhat unusual. And those have a specific look, if you will, and if they look like CLL cells, that’s how we make the diagnosis.

As you start reading, you’ll find that people talk about monoclonal B-cell lymphocytosis, which is MVL, CLL, and SLL, and a lot of times, it’s confusing because you start reading, and there are all of these – kind of lingo around it. So, what we’re looking for with flow cytometry is how many cells are in the peripheral blood? If it’s fewer than 5,000 per microliter – so, your doctor will talk to you; they’ll either say five or 5,000, depending on what units they’re using.

If it’s lower than that, and you don’t have any lumps or bumps or lymphadenopathy, meaning enlarged lymph nodes, that’s when we make the diagnosis of monoclonal B-cell lymphocytosis.

So, that’s kind of a pre-cancer diagnosis. Then, CLL, the diagnosis, is made in any patient who has greater than 5,000 cells per microliter, or five, if you’re using that unit, and that’s when the diagnosis of CLL is made. If people have lymph nodes that are enlarged, and there are CLL or SLL cells inside of them, but not a lot of involvement in the blood, that’s when we make the diagnosis of SLL, which is small lymphocytic lymphoma. So, CLL and SLL are really the same disease; it’s just where they manifest, primarily. So, whether it’s mostly in the blood, that’s CLL, or mostly in the lymph nodes, and that’s SLL.

Dr. Roeker:                 

So, that’s the flow cytometry test, and that’s kind of the test that leads to the diagnosis.

Katherine:                  

What about FISH and TP53 mutation?

Dr. Roeker:                 

So, at diagnosis, I often do this testing. Depending on which provider you go to, you may do it at diagnosis or closer to the time of needing treatment. But FISH is basically a test that looks for big changes in the chromosomes. So, if you remember back to high school biology and you see all of those chromosomes laid out, what FISH is looking for is big changes in those chromosomes. So, is there an entire arm of one of the chromosomes missing? And that’s what FISH does.

There’s also something called karyotyping, or in some institutions, they use something called SNP array. These are more refined tests that look for additional changes in the DNA. So, FISH is kind of a targeted look at a few different chromosomes, whereas karyotype or SNP array looks at all of the chromosomes. Then, there is TP53 mutational testing, and that is done through a bunch of different testing, often next-generation sequencing is what we use.

And we basically use a fancy spellcheck to see if there are any misspellings, if you will, in TP53.

And TP53 is a gene that we use. It’s called the guardian of the genome. So, its job is basically to make sure that our cells are reproducing. They keep all the genes in working order. If TP53 is missing or misspelled, it doesn’t work as well, and that’s when people can get more issues with their CLL. It tends to be CLL that behaves a little more aggressively.

Katherine:                  

What about IGHV mutation status?

Dr. Roeker:                 

So, IGHV mutation status is a really important feature because it really is, of all of the things, what helps us understand the best way to go about therapy. And IGHV mutational status is basically a signature of the CLL that helps you understand how mature or immature the CLL cells are.

In general, mature cells tend to behave a little bit more predictively, and in ways that behave a bit better with therapy. So, the more mature cells are actually mutated IGHV, and I know that’s backward, because usually we think of mutated as being back. But in this case, mutated is actually those cells that are a bit more mature, and that just has to do with how white blood cells develop in our body. If it’s IGHV-unmutated, those tend to be the more immature cells that can behave a little more erratically.

Katherine:                  

Which tests need to be repeated over time?

Dr. Roeker:                 

So, IGHV mutational status never changes, so that one does not need to be repeated. TP53 mutational status, FISH, and karyotype or SNP array, are ones that I tend to repeat before we start any therapy. So, at the time that you’re going to start your frontline therapy, and then if you have the disease come back and need to be treated again, I usually repeat those tests because those can change over time.

So, that’s both FISH, karyotype or SNP array, and the TP53 mutational testing.

Katherine:                   

So, it sounds like it’s important for patients to make sure they’ve had this testing. What do the test results reveal about a patient’s prognosis?

Dr. Roeker:                 

So, IGHV mutational status, like I said, really helps us understand how to approach therapy. In general, CLL is a disease that we are increasingly managing with targeted medicines, so drugs that really manipulate the cell biology to either stop the growth of cells or kill the cells so that they pop open. And that has been a trend that has taken place over the last six or seven years, and definitely has revolutionized the treatment of CLL. There is still a small minority of patients, the patients who have IGHV-mutated disease, and are younger, and have fewer other medical problems, that can still be good candidates for chemotherapy.

And the reason that I say that is because in general, chemotherapy for those young, mutated patients cures a subset of patients, so when we look at long-term studies of FCR, which is a combination of chemo and immunotherapy, there are a subset of patients who have a really long period where their disease doesn’t come back, to the point that we call them cured or functionally cured. That’s obviously a word that has a lot of emotional charge around it, and it’s hard because there’s always the possibility of the disease coming back in the future.

But because of those long-term outcomes, we know that there are some patients that can really have long-term benefit from chemoimmunotherapy.

For IGHV-unmutated patients, and especially for patients with TP53 mutations or deletion of 17p, chemoimmunotherapy really is not the right answer, with all of the medications that we have available to us now.

Myeloma Targeted Therapy: Why Identifying Chromosomal Abnormalities is Key

Myeloma Targeted Therapy: Why Identifying Chromosomal Abnormalities is Key from Patient Empowerment Network on Vimeo.

Charise Gleason, a nurse practitioner, provides insight as to why identifying chromosomal abnormalities is essential when it comes to targeted therapy as a treatment choice for myeloma.

Charise Gleason is a nurse practitioner specializing in myeloma and serves as the Advanced Practice Provider Chief at Winship Cancer Institute of Emory University. Learn more about Charise, here.

See More From INSIST! Myeloma

Related Programs:

 

Essential Tests & Imaging After a Myeloma Diagnosis

Lab Tests in Myeloma: Key Results to Monitor

Key Considerations When Choosing Myeloma Treatment: What’s Available?


Transcript:

Charise:                       

So, testing for chromosome abnormalities or changes are important when it comes to targeted therapy.

And we used to think of this more in that relapse setting. But we also look at it upfront now, because it tells us more about the path of myeloma. And there are reasons to check throughout at relapse, again, to see if something’s changed. So, with targeted therapy, we can use the translocation (11;14), for instance.

Many patients have a translocation t(11;14). It’s not a high-risk feature. But we know on clinical trial we have a drug that we’re using called venetoclax that those patients can be very sensitive to.

And so, we’re looking at this not just in translocations but in sequencing for other abnormalities or gene mutations that can help guide us with these newer therapies. And you see that across all cancer types at this point. So, you can get very specific with a patient’s type of myeloma – that this drug is going to work better because you have this mutation.

So, we look at it upfront. It guides us for risk stratification: standard risk versus high risk. And then we look at it in that relapse setting. Do we have a drug or a clinical trial that this patient will respond better to because of those abnormalities?

When we’re risk stratifying, we know standard risk, medium risk, and high risk. Those are those translocations, those gene mutations, that we know about.

But newer testing, like sequencing, gives us a lot more mutations that we don’t even know what to do with them all yet.

We don’t necessarily have drugs for all of them, but it does help guide us down the road. So, right now some common are the translocations, but also deletion 17p, which we’ve known about for a while. But maybe you see a BRAF mutation, which you typically associate with other types of cancers, but we see that in myeloma as well.

So, it helps us look at is there a drug that our myeloma patient might benefit from because they have a BRAF mutation, for instance. 

Essential Imaging and Chromosome Tests after a Myeloma Diagnosis

Essential Imaging & Chromosome Tests After a Myeloma Diagnosis from Patient Empowerment Network on Vimeo.

Charise Gleason, a nurse practitioner, explains why tests such as bone marrow biopsy, FISH test and full-body imaging are considered essential for patients after a myeloma diagnosis.

Charise Gleason is a nurse practitioner specializing in myeloma and serves as the Advanced Practice Provider Chief at Winship Cancer Institute of Emory University. Learn more about Charise, here.

See More From INSIST! Myeloma

Related Programs:

Myeloma Targeted Therapy: Why Identifying Chromosomal Abnormalities is Key

Lab Tests in Myeloma: Key Results to Monitor

Key Considerations When Choosing Myeloma Treatment: What’s Available?


Transcript:

Charise:                       

The essential testing that a myeloma patient should undergo following a diagnosis is – obviously, you’ve had those diagnostic test labs, the 24-hour urine, some scans, but the specific things that we need are a bone marrow biopsy.

That includes cytogenetics and FISH, and we can talk a little bit more about that. You also want full-body imaging. We used to always use a skeletal survey, which was an X-ray of the long bones. But, really, the standard of care now is a whole-body scan.

So, depending on what your oncologist or your institution has, that would be a full-body CT scan, a PET-CT scan, or a full-body MRI. So, one of those tests is recommended. It’s not unusual if you have a PET. Like our institution, we use PET-CT. So, for a newly diagnosed patient, we’re also going to get an MRI of the spine for a further snapshot.

What we’re looking for with a full-body imaging is we want to make sure that there aren’t any lytic lesions.

So, with an X-ray, you have to have about 30 percent bone loss before it’s going to show up on an X-ray. So, those traditional X-rays that we used to use could actually miss an active lesion. So, in that diagnosis, we want to know that there is no active myeloma. And those other scans are going to be more specific to that.

So, the cytogenetics of a bone marrow biopsy are going to tell us more about the biology of the disease. So, cytogenetics actually grows out the pairs of cells. And so, that’s why that portion of the test can take a while to get back.

At our institution, it can take two to three weeks, because you’re actually growing out those cells to look at the chromosomes. And remember these are chromosomes, or genes, of the plasma cells. And so, we’re looking for those abnormalities that might be present. So, you think about it more for the biology of the disease.

When we’re looking at FISH, we’re also looking… That test shows a little bit different. It comes back quicker. It shows two different phases of cell changes.

And so, it will tell us about chromosomes as well. But do you have any additional chromosomes – so, that would make it a hyperdiploid narrow. It tells us if there’s a loss of a chromosome – so, you’re missing one, a hypodiploid. It also tells us about translocations – so, when you’ve had a piece of a chromosome change and go to another cell. And so, that, for instance, would be like that translocation t(11;14) or translocation t(4;14). So, it’s essential to have that testing to tell us about that, because it helps guide treatment. And as we talk more about targeted therapy, these things really can come into play.