Tag Archive for: AML

Being Pro-Active in Your Care: Key AML Testing to Advocate For

Being Pro-Active in Your Care: Key AML Testing to Advocate For from Patient Empowerment Network on Vimeo.

AML specialist Dr. Naval Daver discusses essential testing for AML patients and suggests key questions that patients should ask their doctor during clinic visits. 

Dr. Naval Daver is an Associate Professor in the Department of Leukemia at The University of Texas MD Anderson Cancer Center. More about Dr. Daver here.

See More From INSIST! AML

Related Resources:

How Do AML Targeted Treatments Work?

New AML Therapies vs Traditional Chemotherapy: What’s the Difference?

INSIST! AML Resource Guide

Transcript:

Katherine:                   

Well, let’s talk about patient advocacy. What are some of the key tests that patients should ask for after they’ve been diagnosed?

Dr. Daver:                    

The key things that patients should want to get the information is: 1) Knowing the bone marrow blasts.

I mean, that’s really basic. Just knowing what leukemia it is. What are the blast percentage? 2) Is, I think, chromosome analysis is very critical to get that information and to make sure we’re not missing acute promyelocytic leukemia, or core-binding factor leukemia, which have different treatments and very favorable outcomes, and would never, in general, never require a allogenic transplant. At least in majority of cases.

And 3), which is the one where we still see that it may sometimes not be available or be missed, is molecular testing.

I think it’s very critical to request molecular testing. And among molecular testing, especially FLT3, maybe IDH1 and IDH2, and TP53.

So, I think these are the most important data sets. Cytogenetics, key molecular mutations, bone marrow blasts, and confirmation of the type of leukemia before we embark on any treatment.

Katherine:                   

How can patients feel confident, do you think, in speaking up, and becoming a partner in their care?

Dr. Daver:                    

When you go for the clinic visits, just to have a list of your questions written down and having them prepared and prioritizing them. I always say, have your top-three questions ready.

We’ll try to do the others. But we’ll do the top three. And I think, when you have a new diagnosis of AML, the top three should be: what is the type of leukemia I have, and what are the bone marrow blasts? Number one. Do we have any chromosome and molecular information? Number two. And number three: Are there any specific treatments for my specific AML based on that chromosome molecular information? Or do we need additional information, and can we wait for that safely? I think these are the three very reasonable questions which, I think again, most leukemia experts will automatically be discussing this.

But, I think, for a patient, I think that’s important information to make sure they get before proceeding. If there’s time, the fourth question will be: Is – Are – Do we have a choice between high intensity, low intensity? And if we do, what are the pros and cons? In some cases, there may be a choice. In some cases, it may very clear that high intensity is the way to go, or low intensity is the way to go. But still, I think it’s often good to discuss that with your physician.

New AML Therapies vs Traditional Chemotherapy: What’s the Difference?

New AML Therapies vs Traditional Chemotherapy: What’s the Difference? from Patient Empowerment Network on Vimeo.

Does a newer therapy mean it’s more effective? Dr. Naval Daver, an AML specialist, discusses the differences between newer targeted therapies and chemotherapy, sharing key learnings from recent research. 

Dr. Naval Daver is an Associate Professor in the Department of Leukemia at The University of Texas MD Anderson Cancer Center. More about Dr. Daver here.

Download Program Resource Guide

See More From INSIST! AML

Related Resources:

How Do AML Targeted Treatments Work?

Genetic Mutations That Affect AML Prognosis and Treatment

Confused About AML Genetic Testing and Treatment? What You Need to Know

Transcript:

Katherine:                   

How do these newer therapies differ from more traditional chemotherapy?

Dr. Daver:                    

Yeah. Dramatically different. Completely different from traditional chemotherapy. So, to put it in more layman terms, traditional chemotherapy is like a nuclear bomb. Right? You – There’s a lot of things there in the marrow. You don’t know what’s good. You don’t know what’s bad. Blow it all up and hope that, when the new plants grow, the good ones grow and the bad ones were kill. And, in fact, this is true, to a large extent. Traditional chemotherapy, not to put it down, is actually been curative in a large population of AML for the last three decades. Our group and British MRC and Polish, and many groups have published up to 50 to 65 percent cure rates, especially in younger patients, below 65, with traditional chemotherapy.

So, this is not bad. People always get depressed with leukemia. But if you look at solid tumors, I mean, they have never achieved cure rates above 10 to 15 percent till the last decade or so. So, we were still getting 60, 65 percent cure rate. Two out of three.

So, traditional chemotherapy has done great work. But it was that approach. Just nuclear explosion. Take it all out, and hope good stuff comes.

Now the targeted therapy’s like a sniper. It’s actually looking for the particular leukemia cells and trying to take them out one by one with minimum collateral damage to your healthy bone marrow cells, which are important to produce red cells, platelets, white cells. So, guess what? There’s much less toxicity. You don’t see the hair loss with these agents. You don’t see the mouth sores and mucositis. GI complications are much less; infection risk is usually less.

Not to say they don’t have their own side effects. Unfortunately, even the targeted therapies have unique side effects. But, in general, those side effects are much less impactful in a negative quality-of-life way and much more manageable and tolerable. So – And, in the end of the day, they’re actually often more effective.

So, for example, with the FLT3 inhibitor, the study that was done with Gilterinib and Quizartinib, two very potent FLT3 inhibitors, was looking at a single-agent FLT3 inhibitor versus three-drug, high-intensity combination nuclear chemotherapy.

And if I told this to any layperson, they would say, oh my God, that’s completely unfair comparison. You’re going to use three drugs, IV chemo, strong chemo, and compare it to one oral targeted pill. There’s no way the pill can be even equal, leave apart, win.

But guess what? The targeted therapy actually won. It not only was equal. It doubled the response rates, it reduced the toxicities and early mortality and led to improved overall survival, the gold standard. So, this shows that even though they are sniper, they can actually be much more effective with less toxicity. So, it’s a win-win. Better, tolerable, and more effective. Now the next stage within then decade, we think, it’s not one or the either, it’s really a combination. So, we’re reducing the dose of chemotherapy. So, we’re not making it as nuclear as it was. It’s still intense. But much more tolerable. And we’re compensating for that by adding the targeted therapy.

And, in fact, in the end, we expect much higher responses and survival with much better tolerability and lower early mortality. But I don’t think we’re at a stage where traditional chemotherapy is gone. Maybe 10, 12 years from now, as many more developments come, we’ll get there. But I think it still has a role, especially in the younger AML patients.

Katherine:                   

Dr. Daver, you mentioned the – some common side effects of chemotherapy. What about some of the newer therapies? Do they also have side effects?

Dr. Daver:                    

Yeah. Absolutely. I mean, every therapy we have in leukemia has a side effect. There’s no drug I can mention that is just devoid of them. Of course, some are less, and some are more. So, to be more specific, I think, for example, IDH1, IDH2 inhibitors, these are probably one of the most tolerable treatments we have in all of leukemia treatment. In general, they don’t cause much myelosuppression. Meaning, drop in blood counts. They don’t cause hair loss. They don’t cause mouth sores and GI upset in majority of people.

They’re always some patients who may. But what they can cause are two things: Number one, is they can cause what we call the differentiation syndrome.

And differentiation syndrome means the blasts that are going from the immature state to the mature state; in that process, they can cause an inflammatory reaction. And this can manifest with fever and cough, and chest pain, hypoxia. It’s something that’s actually very, very easily treatable, giving steroids for three or four days will take care of it. But many times, people were not aware of this. And so, often, we saw this was missed in the community.

So, that’s one specific example. With the FLT3 inhibitors, sometimes we see that they can cause more prolonged drop in blood counts, and count recovery can be delayed. Or we can sometimes see that they may cause some cardiac signals; increase in cardiac intervals. Again, something that, with close monitoring, bloodwork, keeping the electrolytes normal, can be managed. But I don’t want to go through the whole list. But the point is that there are specific and unique side effects that can be seen with particular targeted therapies.

And again, this is a learning curve where we have done these trials for eight to 10 years. So, we became familiar. But when the drug is approved, it’s a – it’s kind of a night-and-day situation in the community. They didn’t have the drug yesterday. They have it today. But there may not be any learning curve there. So, I think that’s where a lot of education and interaction with our colleagues is now coming into play.

But also, patients, I think, need to take this a little bit into their own hands, and also read about the label, read about the drug. So that, if they have side effects, if they actually ask their doctor and say, do you think this could be differentiation? I read about it. Yeah, most people will at least think about it. And I think this could be helpful to make sure that things are not missed. So, we do want patients to be more interactive and kind of  take things into their own hands. Because there are so many new drugs out there that their doctors may not be fully familiar yet.

Should AML Molecular Tests Be Repeated?

Should AML Molecular Tests Be Repeated? from Patient Empowerment Network on Vimeo.

Dr. Naval Daver, an AML specialist, reviews genetic testing, how the results affect AML treatment decisions, and when retesting may be appropriate for patients. 

Dr. Naval Daver is an Associate Professor in the Department of Leukemia at The University of Texas MD Anderson Cancer Center. More about Dr. Daver here.

Download Program Resource Guide

See More From INSIST! AML

Related Resources:

 

Genetic Mutations That Affect AML Prognosis and Treatment

How is Acute Myeloid Leukemia (AML) Treated?

How Do AML Targeted Treatments Work?

Transcript:

Katherine:                   

What is genetic testing in AML?

Dr. Daver:                    

So, genetic testing in AML is basically what we call molecular profiling. 

So, it’s looking at the presence of particular molecular mutations. For example, at MD Anderson, we do what we call 81 gene panel. So, this looks at 81 different genes for mutations in the bone marrow of newly diagnosed acute myeloid leukemia. Now, how did we come up with 81 genes? So, this was actually done by literature analysis and review of previously published preclinical and translational studies, and we basically selected all mutations that had been shown to occur in two percent or more of thousands of AML patients. And we found 81 such mutations. So, that any mutation that had a two percent or higher frequency in known published or public databases was included.

And that’s how we’re able to analyze for the mutation.

So, it’s still possible that there may be some very rare mutations that are present, and those may be important for research. But they don’t change our treatment decision today. And so that’s what we call genetic profiling. Some people call it molecular mutation analysis. Some people call it next-generation sequencing.

But basically, this is looking for mutations in particular genes that are known to occur in AML. Now of those 81 genes; and some people do a 100 gene panel, some do 50, so those are variables; but among those, there are four or five that are most important: the FLT3, as we discussed, where we can use FLT3 inhibitors; IDH1 and two, because we can use IDH1 and IDH2 inhibitors; TP53 is a very important mutation because it has very high risk and adverse prognosis.

And there are now new drugs coming that may be very effective in TP53. So, we are checking for that. Those drugs are in trials, but the trials are showing very promising data and could be a great option if a patient is known to have a TP53.

Those drugs are Magrolimab, CD47 antibody, and APR-246. So, these are the four most important therapeutic mutations.

There are also some mutations that have prognostic value even though we cannot target them. These include mutations like RUNX1, DNMP3A, ASXL1.

One does not need to know the list. But the point is that these mutations may help determine whether a patient falls into intermediate-risk group or high-risk group, which then impacts the decision as to whether we need a stem cell transplant or not. So, it really is important to get this molecular profiling. It’s actually available in the United States commercially. And any clinic or hospital is able to actually order it. And insurance will cover it in 100 percent of the cases.

Katherine:                   

When should patients be tested, and how is testing done?

Dr. Daver:                   

Yeah. So, the basic testing for any suspected new acute leukemia is to get a bone marrow biopsy. That has to be done. That should be done very quickly because all of the information that will be generated to make the treatment decision will come off the bone marrow biopsy.

Katherine:                   

What about retesting, Dr. Daver? Is that necessary?

Dr. Daver:                    

Yeah. So, retesting is necessary in – not for everything, I think.

But let’s say someone had treatment induction and relapsed a year later. So, we would definitely retest: 1) to confirm with the bone marrow’s relapsed AML, get the blast percentage because we need that before restarting treatment, so we know what was the starting point to know how the patients doing after treatment if he’s responding. 2) Molecular testing, for sure, should be repeated. We usually repeat the molecular testing such as FLT3, IDH1, IDH2, because there are drugs that can target these mutations in a relapse.

And more interestingly, we actually have published, and other groups have also published, that there are some patients who may not have those mutations at baseline but may actually acquire or have detectible mutations at relapse. So, if you don’t have FLT3 at baseline, your physician may assume that the FLT3 is not there, not do mutational testing. But in fact, that may not be true. So, it is important to retest about 15 percent, one five percent, in our publications can acquire a detectible FLT3. Which is critical because this could then change your treatment.

IDH1 and two are rarely lost or acquired, but we have seen a few five percent or so cases of that. So, it’s still better to check for that. And then TP53 we check for because now we have these new research clinical trials, phase one, two, that are showing some very encouraging activity in TP53. So, these are probably the main things to retest for.

There’s also some new clinical data emerging with a new drug called menin inhibitor that targets a particular chromosome abnormality, MLL rearrangement.

This is again in a phase one setting, so the data may not be widely disseminated. But we’re seeing some very encouraging activity with menin inhibitors. 

And so, we are 100 percent checking for the MLL rearrangement chromosome, which can be done on FISH, or routine chromosome.

And if that is there then trying to get on one of the menin inhibitor trials, they’re opening about 25, 30 centers with different menin inhibitors, would be a very, very good option because we think these will be the next molecular or chromosome-targeted breakthrough in AML.

What Could AML Treatment Advances Mean for You?

What Could AML Treatment Advances Mean for You? from Patient Empowerment Network on Vimeo.

AML specialist Dr. Naval Daver provides an overview of the progress in the field of research, including a discussion of inhibitor therapies that have revolutionized AML therapy. 

Dr. Naval Daver is an Associate Professor in the Department of Leukemia at The University of Texas MD Anderson Cancer Center. More about Dr. Daver here.

Download Program Resource Guide

See More From INSIST! AML

Related Resources:

Genetic Mutations That Affect AML Prognosis and Treatment

Effective AML Combination Treatment: Pairing Old and New Therapies

Confused About AML Genetic Testing and Treatment? What You Need to Know

Transcript:

Katherine:                   

Dr. Daver, I know the field of AML research is advancing rapidly. Would you give us an overview of the current treatment types in AML?

Dr. Daver:                    

There has been dramatic progress in the treatment of acute myeloid leukemia, especially in the last three years. We’ve had eight new drugs approved for the treatment of acute myeloid leukemia. The most progress I think that has happened so far is in the identification of particular molecular mutations and targeting those mutations with targeted therapies.

The mutations that are most important right now and have target options for FLT3 mutations, F-L-T-3, and the drugs that have been USDA-approved for this are an agent called Midostaurin, which is a first-generation FLT3 inhibitor and combination chemotherapy.

And then, more recently, another agent called Gilteritinib, as a single agent in relapse refractory FLT3 AML. The other mutational group that is also very important, and therapeutically needs to be checked, is IDH1 and IDH2. And there are now two IDH inhibitors, IDH1 inhibitor, Ivosidenib, and IDH2 inhibitor, Enasidenib, both of which have been approved by the United States FDA for relapse patients with IDH1, IDH2 mutations. So, I think it’s really critical now to check for particular molecular mutations and to appropriately add the particular targeted therapy or select the particular targeted therapy in patients who have the mutation.

The other major area of advancement, and probably, if not the most important breakthrough that has happened, is the development of a new drug called Venetoclax. This is a BCL2 inhibitor. It’s new in AML, but in fact, it has been used for many years in CLL, which is chronic lymphocytic leukemia.

And this drug, in combination with Azacitidine in the frontline setting in older patients with AML who are not good candidates for intensive induction, has shown very high response rates, almost 70 percent CR-CRi, which is more than double of the 20 to 25 percent we were getting with Azacitidine alone.

And it’s now been approved by the US FDA and, in my opinion, and many of the experts really is the new standard of care and should be used in all older patients who are not good candidates for intensive chemotherapy given both the very high response rates, as well as now mature data showing significantly improved overall survival and a good tolerability.

So, there are many other breakthroughs. But I think these targeted agents, and Venetoclax, probably are the most impactful today. And we’re focusing a number of new combinations building around this. 

Key Testing for Personalized AML Care Resource Guide

Download This Guide

ResourceGuide_InsistAML_Sept2020F

Download This Guide

Treatment Approaches in AML: Key Testing for Personalized Care

Treatment Approaches in AML: Key Testing for Personalized Care from Patient Empowerment Network on Vimeo.

When it comes to Acute Myeloid Leukemia (AML), genetic testing (or biomarker testing) is essential in helping to determine the best treatment approach for YOU. In this program, AML expert, Dr. Naval Daver reviews key decision-making factors, current AML treatments and emerging research for patients with AML.

Dr. Naval Daver is an Associate Professor in the Department of Leukemia at The University of Texas MD Anderson Cancer Center. More about Dr. Daver here.

Download Program Resource Guide

See More From INSIST! AML

Related Resources:

 

How is Acute Myeloid Leukemia (AML) Treated?

 

Effective AML Combination Treatment: Pairing Old and New Therapies

 

Confused About AML Genetic Testing and Treatment? What You Need to Know

Transcript:

Katherine:                   

Welcome to INSIST! AML. A program focused on empowering patients to insist on better care. Today we’ll discuss the latest advances in AML, including the role of genetic testing and how this may affect treatment options. I’m Katherine Banwell, your host for today’s program. And joining me is Dr. Naval Daver. Welcome, Dr. Daver. Thank you so much for being here. Would you introduce yourself?

Dr. Daver:                    

Hello. Yeah. Thank you very much, Katherine. It’s a pleasure to join this discussion and meeting. I’m the Associate Professor in the Department of Leukemia at the MD Anderson Cancer Center. I focus on the treatment of acute myeloid leukemia and MDS, including the development of a number of clinical trials that are using targeted therapies and immune therapies for this disease. And with the great and dramatic progress, we’re seeing in acute myeloid leukemia; I think it is now more important than ever for patients to be aware of the options and be able to select the most appropriate therapy with their physicians.

Katherine:                   

Before we get into the discussion about AML, a reminder that this program is not a substitute for seeking medical advice. Please refer to your own healthcare team. Dr. Daver, I know the field of AML research is advancing rapidly. Would you give us an overview of the current treatment types in AML?

Dr. Daver:                    

There has been dramatic progress in the treatment of acute myeloid leukemia, especially in the last three years. We’ve had eight new drugs approved for the treatment of acute myeloid leukemia. The most progress I think that has happened so far is in the identification of particular molecular mutations and targeting those mutations with targeted therapies.

The mutations that are most important right now and have target options for FLT3 mutations, F-L-T-3, and the drugs that have been USDA-approved for this are an agent called Midostaurin, which is a first-generation FLT3 inhibitor and combination chemotherapy.

And then, more recently, another agent called Gilteritinib, as a single agent in relapse refractory FLT3 AML. The other mutational group that is also very important, and therapeutically needs to be checked, is IDHN1 and IDH2. And there are now two IDH inhibitors, IDH1 inhibitor, Ivosidenib, and IDH2 inhibitor, Enasidenib, both of which have been approved by the United States FDA for relapse patients with IDH1, IDH2 mutations. So, I think it’s really critical now to check for particular molecular mutations and to appropriately add the particular targeted therapy or select the particular targeted therapy in patients who have the mutation.

The other major area of advancement, and probably, if not the most important breakthrough that has happened, is the development of a new drug called Venetoclax. This is a BCL2 inhibitor. It’s new in AML, but in fact, it has been used for many years in CLL, which is chronic lymphocytic leukemia.

And this drug, in combination with Azacitidine in the frontline setting in older patients with AML who are not good candidates for intensive induction, has shown very high response rates, almost 70 percent CR-CRi, which is more than double of the 20 to 25 percent we were getting with Azacitidine alone.

And it’s now been approved by the US FDA and, in my opinion, and many of the experts really is the new standard of care and should be used in all older patients who are not good candidates for intensive chemotherapy given both the very high response rates, as well as now mature data showing significantly improved overall survival and a good tolerability.

So, there are many other breakthroughs. But I think these targeted agents, and Venetoclax, probably are the most impactful today.

And we’re focusing a number of new combinations building around this.  

Katherine:                   

What are common mutations in AML?

Dr. Daver:                    

Yeah. So, the most common mutation in AML is F-L-T-3, FLT3 mutation. This is both prognostically important mutation, presence of an FLT3 in a newly diagnosed AML, has been shown in many large publications by the German Cooperative Group, British Cooperative Group, our group, and others, is associated with an inferior survival.

Also, now, on top of that, it is also a therapeutically important mutation in addition to having negative prognostic value because the addition of FLT3 inhibitors seems to dilute, to a large extent, the negative prognostic value.

So, we believe that if we can identify FLT3 mutations at FLT3 inhibitors, we can definitely improve the outcome of those patients. The second most common is what we call NPM1 mutation, and that tends to occur with FLT3. About 55 percent of patients with an FLT3 mutation will have a coopering NPM1.

NPM1 is very interesting. With NPM1 mutation is present on it’s own without a FLT3, it’s actually associated with favorable outcome. It’s a favorable prognostic marker. However, if NPM1 is present with a FLT3, and especially if the FLT3 has a high quantity, high allelic load, then the NPM1 loses its favorable impact. So, now we’re kind of moving beyond just; do you have one mutation or not, which is what we thought 10 years ago, to; well, yes, you have this mutation, but what about the core-occurring mutation and even beyond. What about the burden, or what we call the variant allele frequency of that mutation?

So, for good or bad and I think it’s good in the end because it’s going to improve the patient outcomes, that we are getting more, more in-depth and there’s no longer quote, unquote, AML.

So, there’s a lot more granularity and analysis that is required even before starting treatment. And this is the thing that, in the community, we’re educating the doctors a lot, is that it’s okay to wait four to six days, especially if the patient does not have a very proliferative leukemia, to get the important bloodwork to identify the appropriate molecular and chromosome group.

So, that we can select the right treatment which will improve outcome rather than just rushing into standard treatment and missing a particular molecular chromosome group.

Katherine:                   

True. It might not be – the genetic testing might not be right for everyone.

Dr. Daver:                    

Right. Right.

Katherine:                   

What is genetic testing in AML?

Dr. Daver:                    

So, genetic testing in AML is basically what we call molecular profiling.

So, it’s looking at the presence of particular molecular mutations. For example, at MD Anderson, we do what we call 81 gene panel. So, this looks at 81 different genes for mutations in the bone marrow of newly diagnosed acute myeloid leukemia. Now, how did we come up with 81 genes? So, this was actually done by literature analysis and review of previously published preclinical and translational studies, and we basically selected all mutations that had been shown to occur in two percent or more of thousands of AML patients. And we found 81 such mutations. So, that any mutation that had a two percent or higher frequency in known published or public databases was included.

And that’s how we’re able to analyze for the mutation. So, it’s still possible that there may be some very rare mutations that are present, and those may be important for research. But they don’t change our treatment decision today. And so that’s what we call genetic profiling. Some people call it molecular mutation analysis. Some people call it next-generation sequencing.

But basically, this is looking for mutations in particular genes that are known to occur in AML. Now of those 81 genes; and some people do a 100 gene panel, some do 50, so those are variables; but among those, there are four or five that are most important: the FLT3, as we discussed, where we can use FLT3 inhibitors; IDH1 and two, because we can use IDH1 and IDH2 inhibitors; TP53 is a very important mutation because it has very high risk and adverse prognosis.

And there are now new drugs coming that may be very effective in TP53. So, we are checking for that. Those drugs are in trials, but the trials are showing very promising data and could be a great option if a patient is known to have a TP53.

Those drugs are Magrolimab, CD47 antibody, and APR-246. So, these are the four most important therapeutic mutations.

There are also some mutations that have prognostic value even though we cannot target them. These include mutations like RUNX1, DNMP3A, ASXL1.

One does not need to know the list. But the point is that these mutations may help determine whether a patient falls into intermediate-risk group or high-risk group, which then impacts the decision as to whether we need a stem cell transplant or not. So, it really is important to get this molecular profiling. It’s actually available in the United States commercially. And any clinic or hospital is able to actually order it. And insurance will cover it in 100 percent of the cases.

Katherine:                   

Wow, that’s great. What should – when should patients be tested, and how is testing done?

Dr. Daver:                   

Yeah. So, the basic testing for any suspected new acute leukemia is to get a bone marrow biopsy. That has to be done.

That should be done very quickly because all of the information that will be generated to make the treatment decision will come off the bone marrow biopsy.

Katherine:

What about retesting, Dr. Daver? Is that necessary?

Dr. Daver:                    

Yeah. So, retesting is necessary in – not for everything, I think.

But let’s say someone had treatment induction and relapsed a year later. So, we would definitely retest: 1) to confirm with the bone marrow’s relapsed AML, get the blast percentage because we need that before restarting treatment, so we know what was the starting point to know how the patients doing after treatment if he’s responding. 2) Molecular testing, for sure, should be repeated. We usually repeat the molecular testing such as FLT3, IDH1, IDH2, because there are drugs that can target these mutations in a relapse.

And more interestingly, we actually have published, and other groups have also published, that there are some patients who may not have those mutations at baseline but may actually acquire or have detectible mutations at relapse. So, if you don’t have FLT3 at baseline, your physician may assume that the FLT3 is not there, not do mutational testing. But in fact, that may not be true. So, it is important to retest about 15 percent, one five percent, in our publications can acquire a detectible FLT3. Which is critical because this could then change your treatment.

IDH1 and two are rarely lost or acquired, but we have seen a few five percent or so cases of that. So, it’s still better to check for that. And then TP53 we check for because now we have these new research clinical trials, phase one, two, that are showing some very encouraging activity in TP53. So, these are probably the main things to retest for.

There’s also some new clinical data emerging with a new drug called menin inhibitor that targets a particular chromosome abnormality, MLL rearrangement. This is again in a phase one setting, so the data may not be widely disseminated. But we’re seeing some very encouraging activity with menin inhibitors.  

And so, we are 100 percent checking for the MLL rearrangement chromosome, which can be done on FISH, or routine chromosome.

And if that is there then trying to get on one of the menin inhibitor trials, they’re opening about 25, 30 centers with different menin inhibitors, would be a very, very good option because we think these will be the next molecular or chromosome-targeted breakthrough in AML.

Katherine:                   

We’ve been discussing how molecular testing results lead to targeted therapy. How do targeted therapies work?

Dr. Daver:   

Targeted therapy means that we’re targeting a particular mutation. Now we may be targeting in different ways. So, some of the drugs, like FLT3 inhibitors, these are the most established and oldest targeted therapies in acute myeloid leukemia, been in development for about 18 to 20 years, work by blocking a particular receptor, the FLT3 receptor.

That receptor, when blocked, removes the growth and proliferation signal to the leukemia blast. And that receptor is much more preferentially and heavily expressed on the surface of the acute myeloid leukemia cell as compared to the normal, healthy myeloid or lymphoid cell. So, basically, we are shutting down the growth signals, resulting in eventual death of the leukemia blast and that’s how FLT3 inhibitors work. So, it’s a more of a direct activity resulting in cell death over a few days and quick action. On the other hand, we have what also is called targeted therapies but act very differently. These are IDH1, IDH2 inhibitors.

So, when you use an IDH1 or two inhibitor, they do go to the IDH1 and two receptor on the surface of the acute myeloid leukemia cell, but actually, they don’t result in the death of the cell. They actually cause what we call differentiation.

So, they promote that immature abnormal leukemia cell to undergo maturation and become a normal myeloid cell, which, over time, will die because normal cells have a finite lifespan, and they will die. As compared to leukemia blasts, which can live on much, much, much longer. And so, this process is called differentiation. So, FLT3 inhibitor, very different direct cell death. IDH inhibitor, very different from most maturation differentiation of immature cells to mature cells and takes longer. So, this is important clinically because with FLT3 inhibitors. We see responses quickly, one to two months. IDH inhibitors it takes longer, three to five months.

And so, targeted therapy is not one and all the same. You may be targeting a particular receptor, but the modality of action downstream may be very different.

Katherine:                   

What’s the treatment regimen for targeted therapies, and how long are patients treated with these types of therapies?

Dr. Daver:   

Yeah. I mean, that’s an area of big research. There’s no one field of answer yet for – and I don’t think there will be.

Of course, eventually. So, it really depends on; 1) What setting we’re using it in? Newly diagnosed, relapsed AML. In relapsed AML, with most targeted therapies, whether you’re use is a single agent, like FLT3, IDH1, IDH2, TP53, MLL-targeted agents, the goal is to get a patient to transplant.

Transplant, meaning allogeneic stem cell transplant using a sibling donor or a match-generated donor.

Because in relapsed AML without transplant, irrespective of the genetics and chromosomes, all relapsed AML have very poor outcome. The survival is only 20 percent or less without transplant.

If we can get a patient to transplant, we do have a good chance of long-term survival. So, the goal is transplant. And we usually use a targeted therapy for short, finite period, two to four months, to get a remission, get to transplant, hope that will cure the disease.

In front line, it’s quite different. We’re using induction chemotherapy with FLT3 inhibitors. In some research trials, we’re adding IDH1 and two inhibitors. We’re using Venetoclax, which is a kind of a targeted therapy.

Also, the BCL2 in combination with hypomethylating agents. And here, the targeted therapy is often used indefinitely. At least for one or two years. But in our approach and our guidelines, we continue the FLT3 inhibitor, IDH1 or two inhibitor or Venetoclax, as long as patient is tolerating it and does not have disease progression.

So, these are being used kind of similar to CML, chronic myeloid leukemia, where we use tyrosine kinase inhibitors or myelofibrosis, where you use jak inhibitors. They don’t cure the disease, but they continue to control the disease as long as you take them.

And in the end, we call this functional cure.

If somebody takes a FLT3 inhibitor and lives 20-plus years, semantically, he was never a cure, like an infection gets cured. But functionally, to me, he lived a normal life, and he was cured.

Dr. Daver:                    

And so, that’s how we’re using those inhibitors in the frontline setting different from the relapse setting.

Katherine:                   

How do these newer therapies differ from more traditional chemotherapy?

Dr. Daver:   

Yeah. Dramatically different. Completely different from traditional chemotherapy. So, to put it in more layman terms, traditional chemotherapy is like a nuclear bomb. Right? You – There’s a lot of things there in the marrow. You don’t know what’s good. You don’t know what’s bad. Blow it all up and hope that, when the new plants grow, the good ones grow and the bad ones were kill. And, in fact, this is true, to a large extent. Traditional chemotherapy, not to put it down, is actually been curative in a large population of AML for the last three decades. Our group and British MRC and Polish, and many groups have published up to 50 to 65 percent cure rates, especially in younger patients, below 65, with traditional chemotherapy.

So, this is not bad. People always get depressed with leukemia. But if you look at solid tumors, I mean, they have never achieved cure rates above 10 to 15 percent till the last decade or so. So, we were still getting 60, 65 percent cure rate. Two out of three.

So, traditional chemotherapy has done great work. But it was that approach. Just nuclear explosion. Take it all out, and hope good stuff comes.

Now the targeted therapy’s like a sniper. It’s actually looking for the particular leukemia cells and trying to take them out one by one with minimum collateral damage to your healthy bone marrow cells, which are important to produce red cells, platelets, white cells. So, guess what? There’s much less toxicity. You don’t see the hair loss with these agents. You don’t see the mouth sores and mucositis. GI complications are much less; infection risk is usually less.

Not to say they don’t have their own side effects. Unfortunately, even the targeted therapies have unique side effects. But, in general, those side effects are much less impactful in a negative quality-of-life way and much more manageable and tolerable. So – And, in the end of the day, they’re actually often more effective.

So, for example, with the FLT3 inhibitor, the study that was done with Gilterinib and Quizartinib, two very potent FLT3 inhibitors, was looking at a single-agent FLT3 inhibitor versus three-drug, high-intensity combination nuclear chemotherapy. And if I told this to any layperson, they would say, oh my God, that’s completely unfair comparison. You’re going to use three drugs, IV chemo, strong chemo, and compare it to one oral targeted pill. There’s no way the pill can be even equal, leave apart, win.

But guess what? The targeted therapy actually won. It not only was equal. It doubled the response rates, it reduced the toxicities and early mortality and led to improved overall survival, the gold standard. So, this shows that even though they are sniper, they can actually be much more effective with less toxicity. So, it’s a win-win. Better, tolerable, and more effective. Now the next stage within then decade, we think, it’s not one or the either, it’s really a combination. So, we’re reducing the dose of chemotherapy. So, we’re not making it as nuclear as it was. It’s still intense. But much more tolerable. And we’re compensating for that by adding the targeted therapy.

And, in fact, in the end, we expect much higher responses and survival with much better tolerability and lower early mortality. But I don’t think we’re at a stage where traditional chemotherapy is gone. Maybe 10, 12 years from now, as many more developments come, we’ll get there. But I think it still has a role, especially in the younger AML patients.

Katherine:                   

Dr. Daver, you mentioned the – some common side effects of chemotherapy. What about some of the newer therapies? Do they also have side effects?

Dr. Daver:                    

Yeah. Absolutely. I mean, every therapy we have in leukemia has a side effect. There’s no drug I can mention that is just devoid of them. Of course, some are less, and some are more. So, to be more specific, I think, for example, IDH1, IDH2 inhibitors, these are probably one of the most tolerable treatments we have in all of leukemia treatment. In general, they don’t cause much myelosuppression. Meaning, drop in blood counts. They don’t cause hair loss. They don’t cause mouth sores and GI upset in majority of people.

They’re always some patients who may. But what they can cause are two things: Number one, is they can cause what we call the differentiation syndrome.

And differentiation syndrome means the blasts that are going from the immature state to the mature state; in that process, they can cause an inflammatory reaction. And this can manifest with fever and cough, and chest pain, hypoxia. It’s something that’s actually very, very easily treatable, giving steroids for three or four days will take care of it. But many times, people were not aware of this. And so, often, we saw this was missed in the community.

So, that’s one specific example. With the FLT3 inhibitors, sometimes we see that they can cause more prolonged drop in blood counts, and count recovery can be delayed. Or we can sometimes see that they may cause some cardiac signals; increase in cardiac intervals. Again, something that, with close monitoring, bloodwork, keeping the electrolytes normal, can be managed. But I don’t want to go through the whole list. But the point is that there are specific and unique side effects that can be seen with particular targeted therapies.

And again, this is a learning curve where we have done these trials for eight to 10 years. So, we became familiar. But when the drug is approved, it’s a – it’s kind of a night-and-day situation in the community. They didn’t have the drug yesterday. They have it today. But there may not be any learning curve there. So, I think that’s where a lot of education and interaction with our colleagues is now coming into play.

But also, patients, I think, need to take this a little bit into their own hands, and also read about the label, read about the drug. So that, if they have side effects, if they actually ask their doctor and say, do you think this could be differentiation? I read about it. Yeah, most people will at least think about it. And I think this could be helpful to make sure that things are not missed. So, we do want patients to be more interactive and kind of  take things into their own hand. Because there are so many new drugs out there that their doctors may not be fully familiar yet.

Katherine:                   

Well, let’s talk about patient advocacy. What are some of the key tests that patients should ask for after they’ve been diagnosed?

Dr. Daver:                    

Yeah. Absolutely. So, I think the key things that patients should want to get the information is: 1) Knowing the bone marrow blasts.

I mean, that’s really basic. Just knowing what leukemia it is. What are the blast percentage? 2) Is, I think, chromosome analysis is very critical to get that information and to make sure we’re not missing acute promyelocytic leukemia, or core-binding factor leukemia, which have different treatments and very favorable outcomes, and would never, in general, never require a allogenic transplant. At least in majority of cases.

And 3), which is the one where we still see that it may sometimes not be available or be missed, is molecular testing.

I think it’s very critical to request molecular testing. And among molecular testing, especially FLT3, maybe IDH1 and IDH2, and TP53.

So, I think these are the most important data sets. Cytogenetics, key molecular mutations, bone marrow blasts, and confirmation of the type of leukemia before we embark on any treatment.

Katherine:                   

How can patients feel confident, do you think, in speaking up, and becoming a partner in their care?

Dr. Daver:   

Yeah. I mean, this is always a touchy area because physicians may feel that this is kind of encroaching on their territory or telling them what to do. And this is always a major challenge. I think when you go for the clinic visits, just to have a list of your questions written down and having them prepared and prioritizing them.

I always say, have your top-three questions ready.

We’ll try to do the others. But we’ll do the top three. And I think, when you have a new diagnosis of AML, the top three should be: what is the type of leukemia I have, and what are the bone marrow blasts? Number one. Do we have any chromosome and molecular information? Number two. And number three: Are there any specific treatments for my specific AML based on that chromosome molecular information? Or do we need additional information, and can we wait for that safely? I think these are the three very reasonable questions which, I think again, most leukemia experts will automatically be discussing this.

But, I think, for a patient, I think that’s important information to make sure they get before proceeding. If there’s time, the fourth question will be: Is – Are – Do we have a choice between high intensity, low intensity? And if we do, what are the pros and cons? In some cases, there may be a choice. In some cases, it may very clear that high intensity is the way to go, or low intensity is the way to go. But still, I think it’s often good to discuss that with your physician.

So, these are probably the four things one can bring up reasonably without the physician feeling that this is going to take forever, and I cannot discuss this. And then a lot of the AML treatment happens in-patient. So, there will be a lot of time for additional discussion. I tell my patients that, look, once we get the basics and the treatment decided, which is what we do in clinic, then you’ll be in the hospital most of the time. If it’s induction chemo for four weeks. Even if it’s Venetoclax, often they’re admitted for five to seven days, they will have more time then to discuss with the physician, the nurses, on a daily basis, and get more of the nitty-gritty.

Things like diet, exercise, lifestyle. Can I meet friends? I think you should not try to bring those things up right in the first visit. Because that may dilute the key information. So, I think staggering it, keeping in mind that many physicians are extremely busy, and getting that information in pieces over time, is probably productive for you and for the doctor.

Katherine:                   

With Covid-19 affecting all our lives right now, what should AML patients be considering at this time?

Dr. Daver:   

There’s a lot of guidelines on general approaches to managing things in COVID. And all of those guidelines heavily center, as we would think intuitively, on precautions.

Hand washing, minimizing contact, avoiding crowded places, trying to get treatment, potentially locally, if there are equivalent options available. We have not changed any of our frontline – we discuss this a lot every week in our faculty meeting.

This is discussed especially, as you know, because Houston currently is a major center affected heavily by COVID, and so, we have discussed whether we should move in a universal way to lower-intensity therapy for all patients. And we haven’t. And there’s pros and cons to that. When we do induction chemotherapy higher intensity, we, in fact, admit our patients for 28 days.

o, actually, even though it’s high intensity, the patient is more protected because they are in the room. Isolation rooms, sometimes. And they have minimum contact with outsiders. So, with COVID, actually, there’s very little opportunities or chances for them to get it. But the chemo is intensive. So, if they did get COVID, then it could be much more difficult or risky, or even fatal. On the other hand, low-intensity therapy is good because it’s low intensity and the risk of COVID, the frequency may or may not be changed; we don’t know. But the intensity we think could be lower because the immune system has not been suppressed.

However, low-intensity therapy very often is given outpatient. And so, then you have the benefit of lower intensity but the risk that you are going to be driving back and forth to the medical center, getting bloodwork, exposed to people in the waiting room, this and that. So, what we decided, after a lot of discussion among a big leukemia expert faculty in our group, was that we will still decide the optimum treatment based on the leukemia chromosome, molecular, age, fitness of the patient like we’ve always done.

And then we just have to try to encourage the patients to do as much precautions as possible. The other thing with the COVID, I think is very important is that, even though you may not be able to travel to your academic institution nearby because it’s harder to travel now, it’s still a good idea to try to get a consultation. We are doing a number of phone or email consultation, either directly with the patient, and even more frequently with their community doctor.

So, I get every day, four or five emails from academic even, and community physicians just saying, I have this patient, new AML, relapsed AML, whatever the case may be, here’s the mutation chromosome information, and I was going to do this. But the patient asked that I run this by one of my top academic colleagues. So, maybe MD Anderson. Some, I’m sure, are talking to Sloan. Some are, I know, are talking to Dana Farber. Cornell, whatever it may be. So, you can always request that. And maybe 100 percent of physicians may or may not do that.

And we’re seeing this collaboration actually. One of the positive things of COVID is we’re seeing these collaborations becoming better and better over time.

Katherine:                   

Oh, excellent. If a patient does need to go to clinic for a visit, what safety measures are in place?

Dr. Daver:   

Yeah. So, there’s a few things we’re doing in clinic is; one is we have staggered our clinics. So, instead of having everybody come at 9:00 or 10:00 a.m., and having 30 people in the waiting room, we really have more time slots.

And we ask people to come three of them at a time in the waiting room. We’re minimizing it three to five patients at most

Of course, there’s a lot of sanitization, dispensation units everywhere, encouraged to use those. The other important thing which, unfortunately, is a double-edged sword, is that we have had to minimize the number of friends, relatives, spouses, that can come with patients.

In fact, the policy at MD Anderson, like most cancer centers, is that nobody is allowed with the patient unless the patient is physically really impaired, as in wheelchair-bound or cannot go to the restroom. Of course, there are exceptions. But generally, I know, and I actually benefit a lot from it too, when patients have their family because the emotional support also helps our medical team to get information across. The patient may be sometimes stressed and forget things. So, what we’re doing more and more is doing phone calls.

So, what I would recommend is, as soon as doctor comes in, say, hey, doctor, can I call my daughter or my wife? I want her to listen to everything. Perfect. I don’t mind. There’s a speaker on. Good.

So, that helps with communication. But those are the big changes we have done from the clinic perspective. Still seems to be working relatively smoothly. We’re still seeing almost about the same number of patients in clinic that we were before COVID. And we have, fortunately, and knock on wood, not seen big numbers of leukemia patients with COVID. And we think the primary reason is because leukemia patients are just very cautious from the beginning. Even before COVID, they knew the risks, and we want them to continue that as much as possible.  

Katherine:

Dr. Daver, thank you so much for joining us today.

Dr. Daver:   

Thank you very much. Always a pleasure.

Katherine:

And thank you to all of our partners.

To learn more about AML and to access tools to help you become a more proactive patient, visit powerfulpatients.org. I’m Katherine Banwell – Thank you, Dr. Daver.

On Recovering After a Stem Cell Transplant

As a transplant survivor and peer volunteer, I have met with over 150 transplant patients. The most common question I hear concerns what recovery looks like. People want to know about timelines, precautions, complications, medications, benchmarks, and much more.

I can only answer these questions from my experience, and no two outcomes are the same. But I’ve read and heard enough other stories to know where mine is typical or exceptional, so I can also place my story in a broader context.

In June of 2016, I was diagnosed with acute myeloid leukemia. I underwent induction chemotherapy and achieved a temporary remission. In October of 2016, I received a double cord blood stem cell transplant. I fully recovered and have returned to all my prior activities, so mine is a very positive story. Along the way, however, there were several memorable challenges.

Prelude to a transplant

My initial treatment required a five-and-a-half-week hospital stay. It was one week for the traditional “7+3” chemotherapy regimen, and another four and a half weeks to monitor and treat the inevitable infections that followed in the wake of chemotherapy-induced immunosuppression.

My diagnosis was routine for my providers but shocking for me. I was asymptomatic and feeling perfectly healthy at my annual physical. But low white blood cell counts triggered a bone marrow biopsy that established my diagnosis. I was hospitalized the next day and started chemotherapy the day after that. My treatment was underway before I even understood my disease and its bleak prognosis.

When they told me to expect a 5-6-week hospital stay, I was dumbfounded. I quickly realized that I needed ways to cope with how my world had suddenly become very small and quite precarious. Over the ensuing weeks, I developed and honed several crucial strategies.

First, I relied upon mindfulness, meditation, and yoga. It helped me banish thoughts about the past and anxieties about the future, and to non-judgmentally accept and live in each moment as it unfolded.

Second, I did as much physical exercise as my circumstances would allow. My routines included stretching, isometric exercises, extensive hall walking, squats, lunges and pushups. I did it mindfully, and these routines structured my days, increased my energy, and lifted my spirits.

Third, I was a pro-active patient. I cultivated good communication with my doctors and nurses. I asked lots of questions about my treatment and became a collaborator in decisions about medications, dosing, and deciphering and treating the many infections and side effects that came my way.

Fourth, I maintained my robust sense of humor. Sharing jokes and witty banter with my medical providers broke the ice, resolved the tension, and humanized our consults. It also gave friends and family a way to relate to me as the person I’d always been rather than the patient I’d recently become.

Fifth, I relied on a supportive belief system. For some, that’s religion. For me, it was a secular worldview based on my social science background. It encouraged me to learn about my condition and fostered a practical, problem-solving orientation to all the challenges it posed.

Finally, I wrote my story from the very first week. I sent detailed reports about my status and reflections as a cancer patient to a large group of email correspondents. Writing for others forced me to understand my journey so I could articulate it for them. This writing became a psychic survival mechanism (and a subsequent memoir).

When the time for transplant arrived, I packed a bag, grabbed my laptop, and took these coping strategies with me. As doctors cured my body, these strategies sustained me throughout everything that was to come.

The Transplant and Hospitalization

Like many patients, I was admitted to my transplant hospital one week before the actual procedure (day -7). I underwent conditioning chemotherapy and full body radiation. Upon my transplant (day 0), I was told to expect another three to five weeks in the hospital before I could be safely discharged.

Days 1-7 were uneventful except for some moderate nausea due my prior chemotherapy and radiation. I got some relief from a drug called marinol that allowed me to eat regular meals during this time. As my counts hit bottom, I was closely monitored for fevers and infections. Even so, I felt good enough to do daily exercise, walk on a treadmill, do yoga, and be as active as possible while confined to my room.

On day 8, my doctors said I was doing so well they were thinking of discharging me in a couple more days – much earlier than expected. But then I developed an infection and a recurring fever that spiked every twelve hours for several days and delayed my discharge.

By day 19, my infection and fevers had resolved, and I went home under the watchful eye of my caregivers. I thus left the hospital in just under three weeks since transplant – much quicker than the 3-5-week hospitalization I had been told to expect.

A Memorable Month at Home

From day 20 to 50, the plan was for daily clinic visits to monitor counts, treat symptoms, and assess progress. On day 21, a bone marrow biopsy revealed that one of my donors was 99% engrafted, which was an unusually early and complete success for a cord blood transplant. With engraftment underway, we then watched for signs of graft-vs.-host disease.

During this month (day 20-50), my caregivers were essential. They drove me to daily clinic visits for blood draws, provider consultations and needed treatments. From day 20-26, I received daily transfusions of platelets and several transfusions of red blood cells. Several more transfusions as well as injections of growth factor medications to spur new white blood cells followed throughout this month. After the second week, however, they reduced my clinic visits to fewer and fewer days each succeeding week.

That first month at home (day 20-50) was also when I felt the side-effects from my treatment most keenly. The lingering impacts of chemotherapy and radiation, the engraftment process, and multiple medications produced several memorable symptoms. There were aches and pains from the engraftment itself that I treated with ibuprofen, and ongoing bouts of nausea that I managed with marinol. I was also taking about 20 scheduled pills a day, including prophylactic antibiotics, anti-viral and anti-fungal medications, anti-rejection medications, and several pills to manage side effects of these medications.

My most memorable symptom during this period was a staggering level of fatigue as my body underwent this transformation. I was sleeping eight to nine hours a night but still required lengthy naps in the late morning and late afternoon. I couldn’t stay awake for more than four hours at a time and was totally exhausted by nightfall.

On day 39, routine blood work detected a cytomegalovirus infection. It’s one of many critters that can reside in our gut our whole lives unbeknownst to us. But with immunosuppression, the virus can become active and pose serious danger. It is usually well controlled if detected early and treated quickly, so I was immediately put on a more powerful antiviral drug to address the infection.

The virus drastically reduced my white blood cell count while the antiviral medication added further immunosuppressive effects. For a few days, I had additional fatigue, aches, chills, and nausea. When the virus and anti-viral forces fought to a standstill, they contemplated admitting me back into the hospital for several days of IV, antiviral treatments. Instead of re-hospitalization, however, the compromise treatment was an outpatient infusion of IV immunoglobulin to boost my white blood cell count while the antiviral medication gradually tamed the virus. With that, I continued my recovery at home.

Through the First 100 Days

From day 50 to day 100, I experienced gradual if uneven improvement. Clinic visits tapered to once a week or less. Bone aches ceased and nausea all but disappeared. Fatigue also decreased, and when I did feel tired, I could usually trace it to increased activity levels compared to my first 30 days at home. As I was able to reduce doses or eliminate some medications, my mind cleared and my energy increased. While I experienced minor rashes, dry eyes, and sinus headaches, there was nothing that required major medical treatment or raised suspicions of graft-vs.-host disease.

By day 58, I began experiencing neuropathy in my feet. This is a common side-effect of chemotherapy, but in my case, it has been blessedly mild. It mainly presents as numbness and tingling under the balls of both feet. I was told it might resolve within a year, but it remains the only side effect that has persisted and which I now regard as permanent. It has not responded to acupuncture or cortisone injections. My best adaptation has been specially designed shoes and custom insoles that take pressure off the sensitive areas and make the condition quite tolerable.

By day 60, I was having trouble lining up caregivers but still needed to get to weekly clinic visits. I had been prohibited from driving or being without a caregiver for the first 100 days, but that was no longer practical. I carefully began driving myself to clinic visits. By then, I knew how my medications affected me and so I delayed my antifungal medication and the blurry vision it caused until I safely returned from my outings.

On day 78, my oncologist recommended removing the “Power Hickman” central line that had served me well for almost seven months. It had been with me since the beginning of my treatment and had facilitated painless blood draws and countless infusions of blood, platelets, IV medications, and chemotherapy. But with the reduction in all these procedures, the risk of an infected line was becoming greater than the benefits of keeping it in place. An added benefit was being able to take a shower without wrapping my entire upper torso in Saran Wrap to protect the gizmo.

Day 100 was a significant benchmark for several reasons. I had another bone marrow biopsy that confirmed full engraftment and no residual leukemia. Reviewing my biopsy results, blood tests, and overall progress, my oncologist said my recovery to date was “as good as it gets.”

At this time, I was able to eliminate or reduce many of my medications. More importantly, I began to gradually taper my anti-rejection medication (cyclosporine) over the next three-month period. The gradual pace of this taper was meant to allow my old body and my new immune system to learn to get along with each other, restore full immunity, and avoid GVHD

By this time, I was feeling much better and was eager to return to my regular activities. Since my blood counts were all good, I asked my oncologist her advice. She provided a rather technical explanation of why I was still at considerable risk and needed to avoid crowds, continue wearing my mask in public, and follow other precautions.

My layman’s interpretation of her explanation was that even though I had sufficient white blood cells and neutrophils, my anti-rejection medication would still prevent them from fully activating in case of infection. So despite feeling better and having good counts, I needed to maintain precautions until my anti-rejection medication had run its course and my immune system was more functional and able to protect me in a germ-filled world.

Completing the Marathon

From day 100 to day 180, I continued gradual improvement and weathered some minor bumps in the road. My clinic visits were now spaced out every couple weeks, and I began to see other practitioners to assess some peripheral issues arising from my diagnosis and treatment.

Since my leukemia put me at risk for skin cancer, I saw a dermatologist who detected a small, basal cell carcinoma that was easily excised. I continue to see her every six months for full body skin checks with no further issues. My leukemia had also caused some retinal hemorrhaging that was diagnosed before transplant. A follow up visit during this period showed that all retinal issues had completely resolved with the eradication of my leukemia.

Even though I was now tapering my anti-rejection medication, its cumulative impact produced numerous unpleasant side effects. While I avoided the most serious ones, I nonetheless experienced flushing, hypertension, nausea, altered kidney function, neuropathy, weight loss, leg cramps, sinus irritation, abdominal swelling, and night sweats. I began a temporary regimen of blood pressure medication and rode out the other issues. To top it off, I also had a flare up of the cytomegalovirus, which once again was quickly detected and effectively treated with specialized antiviral medication.

On day 180, I had my 6-month biopsy which reconfirmed full engraftment and no residual leukemia. At this time, I stopped my anti-rejection medication and its unwanted side effects began to dissipate. I was also able to stop virtually all of my remaining pills with the exception of an antiviral medication which continued until day 365. With adequate immunity restored, I was cleared to do any activity I wanted with one exception: I had to avoid fungal sources of infection (yard work, turning over soil, fresh mushrooms, etc.) for the next six months because such infections are easy to contract and difficult to eradicate.

For me, this was a major psychological turning point. I accepted that I was actually better, resumed my “normal” life, and let go of lingering anxieties about my status. When my transplant oncologist said she didn’t need to see me for another six months, it was initially unnerving after such intensive monitoring. At the same time, it reinforced my sense that I had reached a major milestone in my recovery.

“As Good As It Gets” (and Some Cheap Advice)

After day 180, my care shifted back to my initial oncologist at my induction hospital. Monthly blood draws and bimonthly consultations gradually became less frequent. Four years out from my initial diagnosis, I now have blood draws four times a year and see this oncologist twice a year.

At year one and two (days 365 and 730), I returned to my transplant oncologist for my final two biopsies which found no residual disease.  At year one, they re-did my childhood vaccinations from dead viral sources; at year two, I received my remaining vaccinations from live viral sources.

There’s good reason to say my story is “as good as it gets.” First, I got into remission on the first round of induction chemotherapy. This does not happen for a significant minority of AML patients who require multiple rounds of chemotherapy or other treatments to attain remission.

Second, I had full donor engraftment in three weeks. Most patients achieve engraftment, but it typically takes longer or doesn’t happen as completely as it did in my case. In the worst-case scenario, a small percentage of patients never experience engraftment and face a very poor prognosis.

Third, I have had no graft-vs.-host disease. I had been told there was a 60-70% chance of acute (within the first 100 days) GVHD in cases like mine, but I had no symptoms that could be attributed to this cause. That reduced my chances of chronic (after the first 100 days) GVHD to 20%. Although it can appear years after transplant, I’ve had no symptoms as of this writing.

What is typical about my story are the various infections, unpleasant side-effects, and minor complications documented here. They are simply part and parcel of the disease, treatment, and transplant; few if any patients escape them altogether. But in my case, they were quite manageable with the excellent support I received from my medical practitioners and caregiver team. Thanks to them, I left my transplant hospital on day 19 and never returned.

Advice is cheap, so here’s my two cent’s worth. Even in the best-case scenario, recovery is so gradual that it’s hard to realize when you are actually making progress (especially when there are periodic setbacks). I learned to pay attention to even small steps of improvement and took heart when they occurred.

Here’s one example. Around day 40, I ran up a flight of stairs at home and became short of breath. I initially found this discouraging, but then I realized I hadn’t even run up a flight of stairs since my diagnosis, and that this was progress not regress. Recovery happens through small, incremental changes that eventually culminate in qualitative improvement. It helps to be aware of these small steps as they occur; you may even want to record them in a weekly journal to fully appreciate them.

Finally, some clichés bear repeating. Recovery is a marathon, not a sprint. Moreover, it’s a marathon on an obstacle course of potential complications. Don’t hesitate to ask for help from your doctors or accept assistance from your caregivers. It’s not a burden; it actually makes them feel better when they can help you out. Finally, cultivate patience, resilience, and fortitude as you go the distance. It will serve you well.

Confused About AML Genetic Testing and Treatment? What You Need to Know

Confused About AML Genetic Testing and Treatment? What You Need to Know. from Patient Empowerment Network on Vimeo.

What is AML genetic testing? Dr. Alice Mims explains genetic testing in AML, including the necessity of testing, the effect on treatment decisions, and why patients should be retested over the course of their disease.
 
Dr. Alice Mims is a hematologist specializing in acute and chronic myeloid conditions. She serves as the Acute Leukemia Clinical Research Director at The Ohio State University Comprehensive Cancer Center – James.

See More From INSIST! AML

Related Resources

 

How is Acute Myeloid Leukemia (AML) Treated?

 

Effective AML Combination Treatment: Pairing Old and New Therapies

 

AML Genetic Testing Explained

Transcript:

Dr. Mims:

So, in regards to older treatments and being effective, seven plus three, which is an intensive chemotherapy, is still the standard of care treatment for patients with favorable risk AML, if they’re candidates for intensive treatments because it is potentially curative. And 7 + 3 is also the backbone for newly diagnosis for patients with FLT3 mutations, we add a FLT3 inhibitor called Midostaurin onto that, as it’s shows to improve overall survival with the addition of that compared to just the chemotherapy alone.  

And also, hypomethylating agents, which are a less intensive treatment, were the standard of care for patients who couldn’t tolerate intensive chemotherapy.  

And now we’re seeing the addition of other agents being added to this, like the BCL2 inhibitor of Venetoclax 

And recent data in phase 3 trial comparing the hypomethylating agent alone versus adding that agent did show an overall survival advantage. And so, these are definitely evolving, and I think as we are learning more about targeted therapies and how they can best be used in combination with chemotherapy other than single. Agent. But you give two targeted therapies together and having even better outcomes. We hope we continue to make improvements from where we were even just five years ago and do a better job for. 

How is Acute Myeloid Leukemia (AML) Treated?

How is Acute Myeloid Leukemia (AML) Treated? from Patient Empowerment Network on Vimeo.

 When diagnosed with Acute Myeloid Leukemia (AML), understanding available treatment options can be overwhelming. Dr. Alice Mims, an AML specialist, provides an overview of AML therapies and discusses factors to consider when deciding on an appropriate therapy with your healthcare team.

Dr. Alice Mims is a hematologist specializing in acute and chronic myeloid conditions. She serves as the Acute Leukemia Clinical Research Director at The Ohio State University Comprehensive Cancer Center – James.

See More From The Pro-Active AML Patient Toolkit


Related Resources

 

Facing a Cancer Diagnosis: Advice From An Expert

 

Effective AML Combination Treatment: Pairing Old and New Therapies

 

AML Treatment Options: What’s Available?


Transcript:

For the past 30 years, we’ve had the same treatment options, which have been standard intensive induction chemotherapy that weren’t really tailored to individual patients and had significant toxicity. And not necessarily effective for all AML genomic subtypes.

Now we have quite a bit added to the treatment arsenal for AML, including continuing intensive induction chemotherapy for patients who are appropriate. There’s also been the addition for newly diagnosed patients for hypomethylating agents and a new BCL-2 inhibitor called Venetoclax. IDH inhibitors for patients with IDH1 and IDH2 mutations. The addition of FLT3 inhibitors for patients either newly diagnosed or with relapse or refractory disease.

And liposomal daunorubicin and cytarabine in for patients with AML with MDS related changes or therapy related AML that are newly diagnosed. Lastly, there’s also a hedgehog inhibitor, glasdegib, that’s been approved for newly diagnosed AML patients in combination with low dose cytarabine.  

So, when working with patients, there are multiple factors that we take into consideration when coming up with a treatment decision together and it really should be a team approach. But one of the most important things is trying to understand the patient’s goals of care.

Because different treatments have different expectations, side effects, toxicities that we want to be sure we’re all aligned when we’re making a treatment decision together. Also, other features that we take into account can be age. Other comorbidities, including other diagnosis such as cardiovascular disease, diabetes and other medical issues patients may have.

So, for roles that patients have in making these decisions, they should know that they’re their own best advocate. And so, as you’re getting to learn your oncologist who’s helping you make these treatment decisions, it’s very important that you talk about things that are important to you in regards to quality of life, overall goals for your life. Ask questions in regard to side effects and expectations for outcomes for potential treatment. Whether they’re curative or more palliative, which can extend life. And for quality of life, it may not be curative for AML.  

So, AML really was considered a single disease 30, 20 years ago. Now we really know it’s likely dozens of diseases based off of looking at molecular features of an individual patient’s AML. So, it’s very important to try to understand what genomic features your AML may have, meaning DNA mutations that are just present in the leukemia cells. Chromosomal changes as well. And then understanding if, based off that information, that that may afford you additional treatment options other than the current standards of care.  

Effective AML Combination Treatment

Pairing Old and New Therapies

Effective AML Combination Treatment: Pairing Old and New Therapies from Patient Empowerment Network on Vimeo.

With advances in AML research and a number of new treatments, can older therapy types still play a role in care? Dr. Alice Mims discusses pairing early AML treatments with new agents to boost their effectiveness.

Dr. Alice Mims is a hematologist specializing in acute and chronic myeloid conditions. She serves as the Acute Leukemia Clinical Research Director at The Ohio State University Comprehensive Cancer Center – James.

See More From The Pro-Active AML Patient Toolkit


Related Resources

 

Key Genetic Testing After an AML Diagnosis

 

How is Acute Myeloid Leukemia (AML) Treated?

 

AML Treatment Advances: What’s  New for YOU?


Transcript:

So, in regards to older treatments and being effective, seven plus three, which is an intensive chemotherapy, is still the standard of care treatment for patients with favorable risk AML, if they’re candidates for intensive treatments because it is potentially curative. And 7 + 3 is also the backbone for newly diagnosis for patients with FLT3 mutations, we add a FLT3 inhibitor called Midostaurin onto that, as it’s shows to improve overall survival with the addition of that compared to just the chemotherapy alone.

And also, hypomethylating agents, which are a less intensive treatment, were the standard of care for patients who couldn’t tolerate intensive chemotherapy.

And now we’re seeing the addition of other agents being added to this, like the BCL2 inhibitor of Venetoclax.

And recent data in phase 3 trial comparing the hypomethylating agent alone versus adding that agent did show an overall survival advantage. And so, these are definitely evolving, and I think as we are learning more about targeted therapies and how they can best be used in combination with chemotherapy other than single. Agent. But you give two targeted therapies together and having even better outcomes. We hope we continue to make improvements from where we were even just five years ago and do a better job for.

Acute Myeloid Leukemia

What is Leukemia?

Leukemias are cancers that start in cells that would normally develop into different types of blood cells. It is a cancer of the body’s blood-forming tissues, including the bone marrow and the lymphatic system. Most often, leukemia starts in early forms of white blood cells, but some leukemias start in other blood cell types.

There are several types of leukemia, which are divided based mainly on whether the leukemia is acute (fast growing) or chronic (slower growing), and whether it starts in myeloid cells or lymphoid cells. The main types of leukemia include:

  • Acute Lymphocytic Leukemia (ALL)
  • Acute Myeloid Leukemia (AML)
  • Chronic Lymphocytic Leukemia (CLL)
  • Chronic Myelogenous Leukemia (CML)
  • Other – Other, rarer types of leukemia exist, including hairy cell leukemia, myelodysplastic syndromes and myeloproliferative disorders

In this article we will be focusing on Acute Myeloid Leukemia (AML) since it is the most frequent acute leukemia in adulthood.

What is Acute Myeloid Leukemia?

Acute myeloid leukemia (AML) is a cancer of the blood in which the bone marrow makes abnormal cells. The “acute” in Acute Myeloid Leukemia denotes the disease’s rapid progression In AML, myeloid stem cells usually mature into abnormal myeloblasts, or white blood cells. But, they sometimes become abnormal red blood cells or platelets. As they multiply, they overwhelm the normal cells in the bone marrow and blood. The cancer cells can also spread to other parts of the body.

This type of cancer usually gets worse quickly if it is not treated. It is the most common type of acute leukemia in adults. AML can also be referred to as:

  • Acute myelogenous leukemia
  • Acute myeloblastic leukemia
  • Acute granulocytic leukemia
  • Acute nonlymphocytic leukemia

Types of Acute Myeloid Leukemia

Knowing the subtype of AML can be very important, as it sometimes affects both a patient’s outlook and the best treatment. Most types of AML are based on how mature (developed) the cancer cells are at the time of diagnosis and how different they are from normal cells. The different types of AML include:

The French-American-British (FAB) Classification

  • M0 – Undifferentiated acute myeloblastic leukemia
  • M1 – Acute myeloblastic leukemia with minimal maturation
  • M2 – Acute myeloblastic leukemia with maturation
  • M3 – Acute promyelocytic leukemia (APL)
  • M4 – Acute myelomonocytic leukemia
  • M4 eos – Acute myelomonocytic leukemia with eosinophilia
  • M5 – Acute monocytic leukemia
  • M6 – Acute erythroid leukemia
  • M7 – Acute megakaryoblastic leukemia

World Health Organization (WHO) Classification

  • AML with recurrent genetic abnormalities, meaning with specific chromosomal changes
  • AML with multilineage dysplasia, or abnormalities in how the blood cells look
  • AML, related to therapy that is damaging to cells, also called therapy-related myeloid neoplasm
  • AML that is not otherwise categorized
  • Myeloid sarcoma
  • Myeloid proliferations related to Down Syndrome
  • Undifferentiated or biphenotypic acute leukemias

Cytogenetics

AML can also be classified by the cytogenetic, or chromosome, changes found in the leukemia cells. Changes in certain chromosomes help diagnose cancer, plan treatment, or find out how well treatment is working. Chromosomal changes are commonly grouped according to the likelihood that treatment will work against the subtype of AML.

All chromosomes are numbered from 1 to 22. And, sex chromosomes are called “X” or “Y.” The letters “p” and “q” refer to the “arms” or specific areas of the chromosome. Some of the types of genetic changes found in AML include:

  • A translocation, which means that a chromosome breaks off and reattaches to another chromosome
  • Extra copies of a chromosome
  • A deletion of a chromosome

Some of the most common chromosomal changes are grouped as follows:

  • Favorable. Chromosomal changes associated with more successful treatment include abnormalities of chromosome 16 at bands p13 and q22 [t(16;16)(p13;q22), inv(16)(p13q22)] and a translocation between chromosomes 8 and 21 [t(8;21)].
  • Intermediate. Changes associated with a less favorable prognosis include normal chromosomes, where no changes are found and a translocation between chromosomes 9 and 11 [t(9;11)]. Many other subtypes are considered part of this group, particularly those with 1 or more specific molecular changes. Sometimes, extra copies of chromosome 8 or trisomy 8 may be classified as intermediate risk over unfavorable (see below).
  • Unfavorable. Examples of chromosomal changes that are associated with less successful treatment or with a low chance of curing the AML include extra copies of chromosomes 8 or 13 [for example, trisomy 8 (+8)], deletion of all or part of chromosomes 5 or 7, complex changes on many chromosomes, and changes to chromosome 3 at band q26.

Symptoms of AML

The signs and symptoms of AML vary based on the type of blood cell affected. They are generally nonspecific and warrant investigations for proper diagnosis. The signs and symptoms of AML are:

  • Fever
  • Pain in bones and joints
  • Pale skin
  • Easy bruising and contusions
  • Recurrent infections
  • Unusual bleeding, epistaxis, bleeding gums

Causes and Risk Factors for AML

Although the cause of AML is not known, several factors are associated with an increased risk of the disease. The following factors may raise a person’s risk of developing AML:

  • Age – AML is becomes more common as people get older
  • Being Male – AML is more common in males than in females
  • Smoking – Cancer-causing substances in tobacco smoke are absorbed by the lungs and spread through the bloodstream to many parts of the body
  • Genetics – Researchers are finding that leukemia may run in a family due to inherited gene mutation
  • Chemicals – Long-term exposure to chemicals like benzene, found in petroleum, cigarette smoke, and industrial workplaces, raises the risk of AML
  • Previous Cancer Treatment – People who have received chemotherapy and/or radiation therapy for other types of cancer, such as breast cancer, ovarian cancer, and lymphoma, have a higher risk of developing AML in the years following treatment.
  • Other Bone Marrow Disorders – People who have other bone marrow diseases can develop AML over time

How is Acute Myeloid Leukemia Diagnosed?

No screening exams exist for leukemia.

Doctors often discover that a person has chronic leukemia through routine blood testing. They may also rely on their experience and current knowledge of the disease.

If your doctor suspects you may have leukemia, he or she will order specific diagnostic tests such as a:

  • Blood test
  • Bone marrow biopsy
  • Spinal tap
  • Genomic testing

Is Acute Myeloid Leukemia Hereditary?

Leukemia does not usually run in families, so in most cases, it is not hereditary. However, people can inherit genetic abnormalities that increase their risk of developing this form of cancer.

For example having a family history of other blood disorders increases your risk of getting AML. These disorders include:

  • Polycythemia Vera
  • Essential Thrombocythemia
  • Idiopathic myelofibrosis.

Some syndromes that are caused by genetic mutations (abnormal changes) present at birth seem to raise the risk of AML. These include:

  • Down syndrome
  • Ataxia telangiectasia
  • Li-Fraumeni syndrome
  • Klinefelter syndrome
  • Fanconi anemia
  • Wiskott-Aldrich syndrome
  • Bloom syndrome
  • Familial Platelet Disorder syndrome

Newly Diagnosed AML Advice from an Expert

Dr. Elizabeth Bowhay-Carnes of UT Health San Antonio MD Anderson Cancer Center provides advice for patients facing an AML diagnosis, including:

  • Understand who your care team is including the main attending physician and the main nursing contact/support person would be
  • Designate a family member or friend to play the main supportive role

Preparing for Your AML Appointment

Your first appointment can be overwhelming and can be hard to grasp the realistic expectations of life during the AML treatment phase. Here are some tips and tricks to prepare you for your first appointment:

  • Write down any and all questions you have before coming to the doctor’s office
  • Bring a notepad to the appointment to jot down notes about what is said during the appointment or ask if you can record your visit
  • Consider your values and expectations of your quality of life
  • Keep copies of your medical records
  • Bring a friend or a family member to your appointments to help you retain all the information discusses
  • Consider all your treatment options, including any clinical trials available to you

Treating Acute Myeloid Leukemia

Treatment of AML depends on several factors, including the subtype of the disease, your age, your overall health and your preferences. The types of treatment include:

  • Chemotherapy – the primary treatment options that uses chemicals to kill cancer cells
  • Targeted therapy – medications that target cancer cells, but don’t affect healthy cells. This type of treatment usually has less side effects
  • Other drug therapy
  • Stem Cell transplant – also called a bone marrow transplant, helps re-establish health stem cells by replacing unhealthy bone marrow with leukemia-free stem cells that will regenerate health bone marrow
  • Clinical trials – can involve therapy with new drugs and new drug combinations or new approaches to stem cell transplantation

it is often a good idea to seek a second opinion. A second opinion can give you more information and help you feel more confident about the treatment plan you choose.

What You Can Expect From AML Treatment

Based on your treatment options that you have discussed with your care team, it Is important you understand how treatment may affect you. Some things you should discuss with your care team and loved ones include:

  • Your personal goals and values
  • Results you can expect
  • Potential side effects
  • Palliative care
  • How treatment may affect your life
  • The financial costs of treatment

Recovery and Survival

Leukemia represents 3.5 percent of all new cancer cases in the United States, and it is the seventh leading cause of cancer death. The outlook for leukemia patients depends on which type of leukemia they have, their overall health, and their age.

In the case of AML, it makes up 32% of all adult leukemia cases and there will be about 19,940 new cases of AML in the United States this year. Remission in AML is usually defined when the bone marrow contains fewer than 5% blast cells. For most types of AML, about 2 out of 3 people with AML who get standard treatment go into remission. The 5-year survival rate for people 20 and older with AML is about 25%. For people younger than 20, the survival rate is 67%.


Sources:

“Treatment.” Acute Myeloid Leukemia Treatment | Leukemia and Lymphoma Society, 26 Feb. 2015, www.lls.org/leukemia/acute-myeloid-leukemia/treatment.

“Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version.” National Cancer Institute, www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq.

“Acute Myeloid Leukemia (AML) Subtypes and Prognostic Factors.” American Cancer Society, www.cancer.org/cancer/acute-myeloid-leukemia/detection-diagnosis-staging/how-classified.html.

“Leukemia – Acute Myeloid – AML – Subtypes.” Cancer.Net, 18 Aug. 2017, www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/subtypes.

“Leukemia Types, Symptoms, and Treatments.” UPMC HIllman Cancer Center, hillman.upmc.com/cancer-care/blood/types/leukemia.

“Treating Acute Myeloid Leukemia (AML).” American Cancer Society, www.cancer.org/cancer/acute-myeloid-leukemia/treating.html.

“Acute Myelogenous Leukemia.” Mayo Clinic, Mayo Foundation for Medical Education and Research, 27 Dec. 2017, www.mayoclinic.org/diseases-conditions/acute-myelogenous-leukemia/diagnosis-treatment/drc-20369115.

“Treatment Response Rates for Acute Myeloid Leukemia (AML).” American Cancer Society, www.cancer.org/cancer/acute-myeloid-leukemia/treating/response-rates.html.

“Leukemia – Acute Myeloid – AML – Statistics.” Cancer.Net, 19 Feb. 2020, www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics.

A Look at Leukemia

What is Leukemia?

As with many other cancers, leukemia is not a singular disease. There are many types of leukemia, and while it is a common childhood cancer, leukemia actually occurs more often in older adults. Leukemia is the most common cancer in people under the age of 15, but it is most likely to affect people who are 55 or older. There are more than 60,000 cases of adult leukemia diagnosed each year, and it is more common among men than women. 

Leukemia is a broad term that describes cancer of the blood or bone marrow. It starts when the DNA of developing blood cells are damaged and the bone marrow makes abnormal cells. The abnormal blood cells are the leukemia cells which grow and divide uncontrollably. Unlike healthy cells that follow a life cycle, the leukemia cells don’t die when they are supposed to so they continue to build up, eventually overcrowding the blood. They crowd out normal white blood cells, red blood cells, and platelets so those normal cells can’t grow and function. Eventually, there are more cancer cells than healthy cells in the blood. The type of leukemia is determined based on which blood cells are affected by the abnormal cells. Leukemia usually affects the white blood cells, called leukocytes, but can occur in other blood cells. There are four main types of leukemia: chronic, acute, lymphocytic, and myelogenous.

Leukemia that grows slowly is called chronic leukemia. The cancer cells form very slowly so the body can also continue to form healthy cells, but over time the cancer cells continue to grow and the leukemia worsens. 

Acute leukemia grows very quickly and gets worse really fast. It has been identified as the most rapidly progressing cancer, and it can develop and grow in a matter of days or weeks.

Lymphocytic leukemia forms in the part of the bone marrow that makes lymphocytes, which are white blood cells that are also immune cells. Chronic lymphocytic leukemia (CLL) is most common in older adults and makes up about 25 percent of adult leukemia cases. It is more common in men than women and is very rare in children. Acute lymphoblastic leukemia (ALL) also affects older adults, but children younger than five have the highest risk of developing it.

Myelogenous leukemia forms in the bone marrow cells that produce blood cells, rather than forming in the actual blood cells. Chronic myelogenous leukemia (CML) accounts for about 15 percent of all leukemia cases in the United States. CML develops mostly in adults and is very rare in children. Acute myelogenous leukemia (AML) is a rare cancer that develops quickly with symptoms of fever, difficulty breathing, and pain in the joints. It can be caused by environmental factors, and develops more often in adults than children, and more often in men than women.

There are also several less common types of leukemia. Most of these types are chronic, and each year in the United States, about 6,000 cases of these less common leukemias are diagnosed.

  • Chronic myelomonocytic leukemia (CMML) develops from myeloid cells.
  • Juvenile myelomonocytic leukemia (JMML) is typically found in very young children and is another type of myeloid leukemia.
  • Acute promyelocytic leukemia (APL) is a subtype of AML.
  • Hairy cell leukemia is slow growing, chronic, and makes too many B cells that appear hairy wen viewed under a microscope.

Leukemia Possible Risk Factors

There are several risk factors linked to leukemia. There are environmental factors and genetic reasons why some people might develop leukemia. Some of the factors can be controlled while others can not. Age, smoking history, and exposure to hazardous chemicals are all possible risk factors. Other risk factors may include exposure to chemicals or medical treatments, personal health history, and family history. Some of the possible risk factors need more study to determine a definite link to leukemia, but being aware of your potential risk is important.

If you were exposed to chemotherapy or radiation therapy for another cancer you have a higher chance of getting leukemia later in life. Also, children who took medications to suppress their immune systems, such as after an organ transplant, may develop leukemia. Exposure to chemicals such as benzene and formaldehyde, often found in cleaning products, hair dyes, and embalming fluid, may also increase your risk of developing leukemia. Smoking and exposure to workplace chemicals like gasoline, diesel and pesticides could also be a risk factor.

There are several syndromes, conditions, and genetic disorders that can also increase leukemia risk. Li-Fraumeni syndrome, a hereditary disorder, is linked to leukemia, and children with Down syndrome have a two to three percent increased risk of developing acute myeloid or acute lymphocytic leukemia. Other genetic disorders that increase leukemia risk are Fanconi anemia, and dyskeratosis congenita (DKC). The inherited immune system conditions ataxia-telangiectasia, Bloom syndrome, Schwachmai-Diamond syndrome, and Wiskott-Aldrich syndrome also increase the risk of leukemia. Risk is also increased in patients with a history of blood disorders such as myelodysplastic syndrome, myeloproliferative neoplasm, and aplastic anemia. There are also viruses, such as the human T-lymphotropic virus (HTLV-1), linked to leukemia.

Family history can also play a role in the development of leukemia. Having a sibling with leukemia is a risk factor, and having an identical twin with leukemia gives you a one in five chance of developing it yourself.

Preventing Leukemia

There are no known ways to prevent leukemia; however, being aware of risk factors and attempting to reduce them could help. Studies have linked leukemia to smoking and obesity, so quitting smoking and having a healthy body weight could help prevent leukemia. In addition, avoiding heavy exposure to dangerous chemicals might decrease your risk.

Signs and Symptoms

There are no reliable early screening methods for leukemia and, especially in chronic leukemia, the symptoms may not be very noticeable early on. Symptoms such as fatigue and fever may not be alarming at first, and could be mistakenly attributed to other causes. Acute leukemia symptoms come on faster and are typically more noticeable. All types of leukemia can have similar symptoms, but the symptoms each individual patient has can help determine the type of leukemia. Any symptoms should be checked by a doctor.

The most common symptoms of leukemia are:

  • Extreme fatigue that doesn’t respond to a good night sleep
  • Enlarged lymph nodes that are swollen and tender as a result of leukemia cells building up
  • Unexplained fever higher than 101 degrees that occurs frequently or lasts more than three weeks with no explanation
  • Night sweats that can also occur during the day, and can drench the sheets through to the mattress
  • Bruising and excess bleeding such as frequent nose bleeds caused by poor blood clotting which is also a symptom
  • Poor blood clotting is apparent when small red or purple spots, called petechiae, appear
  • Abdominal pain occurs when white blood cells accumulate in the liver or spleen
  • Bone and joint pain usually occurs in the hips or sternum where there is a lot of bone marrow that is being crowded by abnormal cells
  • Headaches and other neurological symptoms such as seizures, dizziness, visual changes, nausea, vomiting can occur due to leukemia cells in the fluid around the brain and spinal cord
  • Unintentional weight loss of five percent or more of your body weight in 12 months or less. Weight loss can sometimes be a result of having a swollen liver or spleen which can lead to loss of appetite
  • Frequent infections occur because white blood cells aren’t working properly to fight infections
  • Anemia, or iron deficiency, occurs when there is a lack of hemoglobin in the blood to transport iron in the body. Iron deficiency can cause labored breathing and pale skin. Symptoms of anemia are nausea, fever, chills, night sweats, flu-like symptoms, weight loss, bone pain, and tiredness

Complications from Leukemia

Leukemia can cause several serious complications due to the nature of the disease and treatment. Complications such as life-threatening infections can occur when white blood cells are damaged or reduced. When white blood cells aren’t fully functioning, the body can’t properly fight infections, so any infections a leukemia patient gets, such as urinary tract infections or pneumonia, can become very serious. Low platelet counts make bleeding in areas such as the brain, the lungs, and the stomach or intestines very dangerous, while high white blood cell counts can cause leukemia cells to spill over from the blood into other organs possibly causing respiratory failure, stroke, or heart attack.

There are other complications that are related to specific types of leukemia. Notably, the development of secondary cancers and blood cancers are more likely in CLL patients. Another complication of CLL is called a Richter transformation in which the cells can transform into an aggressive form of lymphoma. Kidney failure can be a treatment-related complication of AML or ALL.

Leukemia Diagnosis 

Leukemia can’t be diagnosed based solely on symptoms, but if leukemia is suspected, in a general exam, the doctor will look for an enlarged spleen or liver and take a blood sample. Further diagnostic testing may include a bone marrow test where a long needle is used to extract marrow from the center of a bone (usually the hip). The bone marrow test will help determine if the patient has leukemia and the type of leukemia.

Staging Leukemia

Staging is used to identify the size and location of cancer in the body. Typically cancers have four stages with Stage I usually indicating the cancer is in one location and is not very large. Stage IV indicates the cancer has grown large and spread far from the original location. Most leukemias aren’t usually staged because they are in the blood and therefore have already spread throughout the body. Instead, leukemia can be considered untreated, active, in remission, or recurrent. The exception is CLL, which can spread through the lymph nodes or the blood or bone marrow, so it does have three stages.

Treatment

The earlier treatment starts for leukemia, the better chance of remission. However, thanks to some exceptional advancements in leukemia treatment medications, doctors are often able to take the time they need to come up with the best treatment plan for each individual with leukemia, even in cases of acute leukemia if life-threatening complications are not present. When coming up with a treatment plan, doctors consider the patient’s age, overall health, and most importantly, the type of leukemia the patient has.

Leukemia treatment options vary for each type of cancer:

Watchful Waiting is used when treatment for slower growing leukemias, such as CLL, may not be necessary;

Chemotherapy is the primary treatment for AML, and sometimes a bone marrow transplant is needed;

Targeted therapies are medications that are tyrosine kinase inhibitors which target cancer cells, but don’t affect healthy cells. Targeted therapies have less side effects. Many CML patients have a gene mutation that responds very well to targeted therapy;

Interferon therapy is a drug that acts similar to a naturally occurring immune response which slows and then stops the leukemia cells. This therapy can cause severe side effects;

Radiation therapy is often used in ALL to kill bone marrow tissue before a transplant is done;

Surgery to remove the spleen may be necessary, depending on the type of leukemia;

Stem cell transplant is effective in treating CML and is usually more successful in younger patients. After chemotherapy or radiation or both are used to destroy the bone marrow, new stem cells are implanted into the bone marrow so noncancerous cells can grow.

Treatment for acute leukemia can take up to two years. It is usually done in phases. In the first phase the goal is to use chemotherapy for several weeks to kill the cancer cells and put the patient in remission. The second phase is designed to kill any remaining cancer cells using chemotherapy or stem cell transplant or both. The treatments and their side effects can be pretty harsh for older patients so researchers have been focusing on finding targeted therapies for acute leukemia, which have fewer side effects. Researchers are also hoping CAR T-cell therapy, which uses the patient’s own immune system to treat cancer, could be an eventual replacement for stem cell replacement therapy in older ALL patients. AML is more aggressive and often harder to treat, but several new targeted medications have been approved to treat AML. Researchers continue to look at other targeted therapy options and other drugs for AML.

In some cases of chronic leukemia, a stem cell transplant might be required, but the main treatment is oral medications that patients will probably take for the rest of their lives. Some research is investigating whether or not patients could potentially stop taking the medications at a certain point. 

CML treatments have really advanced and there are now several drugs that target the abnormal protein that causes CML. Thanks to these targeted medications CML patients now have a close to normal life expectancy and a 90 percent five-year survival rate. Clinical trials are looking at using targeted therapies to treat CLL as well and CAR T-cell therapies are also being considered for CLL treatment.

Recovery and Survival

Leukemia represents 3.5 percent of all new cancer cases in the United States, and it is the seventh leading cause of cancer death. The outlook for leukemia patients depends on which type of leukemia they have, their overall health, and their age. Leukemia is more likely to be fatal in older patients. The average age of those who die from leukemia is 75. However, the many advances in treatment options and medications, such as targeted therapies, have created a better prognosis for many. Leukemia has a 62.7 percent five-year survival rate, and some people with leukemia can now achieve complete remission.


Sources

Felman, Adam. “What to Know About Leukemia” Medical News Today, medically reviewed August 28, 2019, https://www.medicalnewstoday.com/articles/142595. Accessed March 9, 2020.

Raymaakers, Karen. “Symptoms of Leukemia” Verywell Health, medically reviewed November 1, 2019, https://www.verywellhealth.com/leukemia-signs-and-symptoms-2252435. Accessed March 9, 2020.

“Adult Leukemia: What You Need to Know” Dana-Farber Cancer Institute, updated December 5, 2019, https://blog.dana-farber.org/insight/2019/11/adult-leukemia-five-things-you-need-to-know/. Accessed March 9, 2020.

Wang, Eunice. “How Fast Does Leukemia Develop” Roswell Park Comprehensive Cancer Center, October 4, 2018, https://www.roswellpark.org/cancertalk/201810/how-fast-does-leukemia-develop. Accessed March 9, 2020.

“Reducing Your Risk for Leukemia” Canadian Cancer Societyhttps://www.cancer.ca/en/cancer-information/cancer-type/leukemia/risks/reducing-your-risk/?region=on. Accessed March 9, 2020.

“Risk Factors for Leukemia” Canadian Cancer Societyhttps://www.cancer.ca/en/cancer-information/cancer-type/leukemia/risks/?region=on. Accessed March 9, 2020.

Stöppler, Melissa Conrad. “Leukemia” MedicineNet, medically reviewed September 11, 2019, https://www.medicinenet.com/leukemia/article.htm. Accessed March 9, 2020.

“Leukemia Screening” Moffitt Cancer Centerhttps://moffitt.org/cancers/leukemia/diagnosis/screening/. Accessed March 9, 2020.

“Leukemia — Patient Version” National Cancer Institutehttps://www.cancer.gov/types/leukemia. Accessed March 9, 2020.

“Cancer Stat Facts — Leukemia” National Cancer Institute Surveillance, Epidemiology, and End Results Programhttps://seer.cancer.gov/statfacts/html/leuks.html. Accessed March 9, 2020.

“Advances in Leukemia Research” National Cancer Institute, June 25, 2019,https://www.cancer.gov/types/leukemia/research. Accessed March 9, 2020.

AML Research: What’s New in Treatment?

 AML expert, Dr. Jessica Altman, discusses the future of AML research, and new learnings that continue to improve current treatment approaches.

Dr. Jessica Altman is Director of the Acute Leukemia Program at Robert H. Lurie Comprehensive Cancer Center of Northwestern University. More about Dr. Altman here.

See More From The Fact or Fiction? AML Series


Related Resources

Misconceptions in Clinical Trials: What’s Fact and What Fiction?

AML Treatment Options: What’s Available?

AML Treatment Treatment Side Effects: What’s Fact and What’s Fiction?


Transcript:

Patricia:            

Are there any new treatments on the horizon that you can talk about, Dr. Altman?

Dr. Altman: 

Absolutely. So, I love to talk about new therapies in AML. Until the last couple of years – it had been 40 years since we approved a sustained treatment in the marketplace in AML. We had been treating the disease the same. And over the last couple of years there have been a growth of therapies. We’re now trying to sort out exactly when we’re using one over another. We also have clinical trials where we’re combining novel therapies for adults with either newly diagnosed disease or relapsed and refractory disease. 

We are in an era of looking out at antibody therapy in AML – that’s one of the new waves of treatment. We are still exploring targeting therapies in the sense of inhibition of FLT3, IDH, and other mutations. So, it’s an era where there’s lots of excitement, and I’m hopeful for our patients.

Patricia:     

Yeah. Tell me what makes you most hopeful about the future of research in this area, and treatment?

Dr. Altman: 

So, I think that’s a great question. I think the fact that we now – the deeper the understanding we have of the biology of the AML, why AML happens, what mutations drive the disease, and then how to target those mutations with individual therapies is what excites me the most. So, our basic science research has exploded, and that occurs at a very quick pace, and that’s allowing us to develop therapies at a much faster rate than I would have anticipated before.

Patricia:

What a wonderful way to end our chat. Thank you so much, Dr. Altman, for taking the time to join us today.

Dr. Altman: 

It’s a pleasure to be here. Thank you so much.

Misconceptions in Clinical Trials: What’s Fact and What’s Fiction?

AML expert, Dr. Jessica Altman, addresses common misconceptions patients have about clinical trials regarding treatments, regulations, and standards of care. Want to learn more? Download the Program Resource Guide here.

Dr. Jessica Altman is Director of the Acute Leukemia Program at Robert H. Lurie Comprehensive Cancer Center of Northwestern University. More about Dr. Altman here.

See More From The Fact or Fiction? AML Series


Related Resources

 

How Is an AML Treatment Approach Determined?

 

Understanding and Managing AML Treatment Side Effects

 

Addressing Common Myths About AML Treatment


Transcript:

Patricia:            

What about clinical trials? What common misconceptions do patients have about enrolling in trials?

Dr. Altman: 

So, I think the misconceptions regarding clinical trials can be very masked. And I think it really depends on the intent of a clinical trial and the phase of the clinical trial. I think that a well-designed clinical trial is almost always the right choice for a patient with acute leukemia at any stage in their therapy. 

That is a bias as a clinical trialist. I think it’s the right bias, but it is still my bias. I think patients frequently worry that they’re being treated as a guinea pig, or they’re not getting an appropriate treatment. What I can tell you is the clinical trials that we and my colleagues across the country and across the world participate in are clinical trials where the patients are getting at least what we consider a standard of care for that phase of their disease, and they may be getting something in addition to that or something that is slightly different, but expected to have a similar response rate. 

We have this phrase in clinical trials, something called equipoise, that if there’s a randomization between options that we need to feel, as the practitioner and as the clinical trialist, that each option is at least as good as the other.  

Patricia:

That kind of goes back to the vetting of treatments before they go to a clinical trial. Tell me a little bit about history. How can we make patients feel more comfortable?

Dr. Altman: 

I want to make sure that I understand the question.

Patricia:

So, how thoroughly are treatments vetted before they go to a clinical trial?

Dr. Altman: 

Great. So, the way that agents get into early phase clinical trials and then later phase studies are these are compounds that have been studied in the laboratory, then studied in small animals, then larger animals. And then, frequently, a drug is started in a patient with relapsed and refractory Acute Myeloid Leukemia and found to be safe – that’s what we call a Phase I study. 

Once we know the right dose and the associated side effects from an early phase clinical trial, later phase studies – i.e. Phase II, where the goal is to determine the efficacy and response rate is conducted. And then, if that appears and looks like it’s promising, a larger, randomized, three-phase study is frequently conducted, where we compare a standard of care to the new approach. 

Patricia:

So, patients should be comfortable that the clinical trial that they’re going through has been thoroughly vetted, has gone through multiple stages before human trials occur?

Dr. Altman: 

That is accurate in terms of compounds get through animal studies, and then depending on the way that the trial is being connected, will then be studied in patients either with relapsed or refractory disease or very high-risk disease. But it’s also very important to mention that these pharmaceutical companies and physicians are not making these decisions alone. 

The clinical trials are all reviewed by scientific review committees through the cancer centers, which are other investigators making sure that everything appears appropriate. In addition, there are institutional review boards at every university whose goal it is to keep patients and research subjects in well-done clinical trials safe. That is their primary goal. And the IRBs – institutional review boards – are very involved with making sure that clinical trials are appropriate and that the conduct of clinical trials is appropriate.

Addressing Common Myths About AML Treatment

AML expert, Dr. Jessica Altman, discusses common myths surrounding available AML treatment options, stem cell transplant and how leukemias are classified.

Dr. Jessica Altman is Director of the Acute Leukemia Program at Robert H. Lurie Comprehensive Cancer Center of Northwestern University. More about Dr. Altman here.

See More From The Fact or Fiction? AML Series


Related Resources

What is Targeted AML Therapy?

Fact or Fiction? AML Treatment and Side Effects

AML Treatment and Side Effects Program Resource Guide


Transcript:

Patricia:            

Dr. Altman, let’s talk about some AML treatment myths floating around. I’ll throw some stuff out there, you let me know if you’ve heard this. “Leukemia is one disease.”

Dr. Altman: 

So, I have heard that. Leukemia is actually a number of different diseases, and it’s very heterogenous. There are acute and chronic leukemias. The acute versus chronic really depends on a couple of factors. The biologic factor is the presence or absence of 20% loss or more in the bone marrow, but that also coincides with how patients present clinically. Acute leukemias tend to present more acutely, more rapidly. And chronic leukemias tend to be a bit more indirect. And the treatments are very different for those entities. 

There are also myeloid or lymphoid leukemias, so there’s Chronic Myeloid Leukemia and Acute Myeloid Leukemia and Chronic Lymphocytic Leukemia and Acute Lymphoblastic Leukemia. So, those are the four major categories. We’re talking about Acute Myeloid Leukemia today. Within Acute Myeloid Leukemia, there are multiple different types of Acute Myeloid Leukemia that are really now best categorized by history – patient history – and the molecular and cytogenetic abnormalities of the disease. 

Patricia:

Now, we’ve already learned about a bunch of them. So, “There are limited treatment options” is definitely a myth. Correct, Dr. Altman?

Dr. Altman: 

So, we have had a major growth of the number of treatment options available for Acute Myeloid Leukemia really in the last couple of years. It’s been a very exciting time for practitioners and for our patients that we have now a number of new therapies. So, there is not just one treatment available. In fact, the conversation regarding treatment options becomes quite extensive with patients and their families, because there are choices. And that’s why consideration of goals in the intent of treatment becomes even more important. 

Patricia:

Here’s another one: “Stem cell transplant – the only chance for cure.”

  Stem Cell Transplant, also called a bone marrow transplant, is a procedure in which healthy blood stem cells are used to replace damaged or diseased bone marrow. This procedure can be used to treat certain types of blood cancers.

Dr. Altman: 

Okay. So, that is also a myth. There are certain types of Acute Myeloid Leukemia where stem cell transplant is the most appropriate treatment once the disease is in remission if the goal of the patient is of curative intent. Stem cell transplant is not appropriate for every individual, and for some types of Acute Myeloid Leukemia, stem cell transplant is not considered. 

Patricia:

What kinds of things do you think about when you’re considering a stem cell transplant with a patient? 

Dr. Altman: 

So, again, I go back to patient goals and understanding their goals of treatment. A stem cell transplant is among the most medically intensive procedures that we have. It is also not just a treatment that occurs over a short time. While the actual transplant is a relatively limited hospitalization and the administration and infusion of stem cells and preparative chemotherapy, it is something that can continue to have side effects and alterations in life quality that can persist for months to years afterwards. 

So, that’s one aspect of things that we talk about regarding stem cell transplant. And really understanding what the benefit of transplant is in terms of a survival advantage, versus what the risk and the cost in terms of toxicities are. And that’s the basis of a lot of the conversations we have.

Patricia:

Sure. Here’s one more: “AML patients require immediate treatment.”

Dr. Altman: 

Sometimes AML patients require immediate treatment, and sometimes they don’t. And that depends on the biology of the disease. How high is the white blood count when the patient comes in? What are the best of the blood counts? Is the patient having immediate life-threatening complications of their acute leukemia? 

And there’s some forms of acute leukemia that require immediate therapy to prevent complications, and there’s some forms of acute leukemia who present an extreme distress from their disease, but there are many patients who present with acute leukemia, and we have time to get all of the ancillary studies back – the studies of genetics and the molecular studies1 – to help further refine the conversation, and further design an appropriate treatment strategy. 

Patricia:

What else? What do you hear from your patients that you feel is maybe a misconception or something they’re not quite understanding about the AML?

Dr. Altman: 

So, I think one of the biggest things that I would like to mention is that response rate and cure are not the same. So, it is possible for one to be treated for Acute Myeloid Leukemia and the disease to enter remission, and yet still not be cured of their disease. 

Acute Myeloid Leukemia is a disease that frequently requires additional cycles of treatment or a stem cell transplant after the initial induction therapy to be able to have the best chance for a long-term cure. So, response and cure are not the same thing.